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Abstract. Equations describing three-wave resonant interactions in adiabatic gas dynamics
in one Cartesian space dimension derived by Majda and Rosales are expressed in terms of
Lagrangian and Hamiltonian variational principles. The equations consist of two coupled integro-
differential Burgers equations for the backward and forward sound waves that are coupled
by integral terms that describe the resonant reflection of a sound wave off an entropy wave
disturbance to produce a reverse sound wave. Similarity solutions and conservation laws for
the equations are derived using symmetry group methods for the special case where the entropy
disturbance consists of a periodic saw-tooth profile. The solutions are used to illustrate the
interplay between the nonlinearity represented by the Burgers self-wave interaction terms and
wave dispersion represented by the three-wave resonant interaction terms. Hamiltonian equations
in Fourier(p, r) space are also obtained whereas the Fourier space variable corresponding to

the fast phase variabk of the waves. The latter equations are transformed to normal form in
order to isolate the normal modes of the system.

1. Introduction

Majda and Rosales [1] considered weakly nonlinear asymptotic equations for resonantly
interacting hyperbolic waves in one Cartesian space dimension. For the case of
compressible, adiabatic gas dynamics, Majda and Rosales derived a pair of inviscid Burgers
equations (one for the forward sound wave and one for the backward sound wave) coupled
through a linear integral operator with a given kernel, dependent on the initial data for
the contact discontinuity or entropy wave eigenmode. For the forward sound wave Burgers
equation, the linear integral operator describes the resonant reflection of the backward sound
wave off the entropy wave to generate a forward sound wave. Similarly, the linear integral
operator in the backward sound wave Burgers equation describes the resonant reflection of
the forward sound wave off an entropy wave to produce a backward sound wave. Resonant
wave interactions in this theory are more liable to be significant for extended periodic or near
periodic wavetrains than for isolated pulses, since the resonant interactions are strengthened
the longer the period of time over which the waves interact.

Almgren [2] and Jolyet al [3] considered in more detail the conditions for three-wave
resonant interactions, including the case of wave propagation in non-homogeneous or non-
uniform media. For the case of a non-uniform background state, high frequency waves
initially in resonance typically move out of resonance sincekhe=ctor of the waves and
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the frequencyw evolve according to the ray equations (see also [4] for the case of resonant
interactions of internal gravity waves in a stratified shear flow). &blgl [3] carried out

a detailed study on resonances, and related the resonance conditions to the geometry of
planar webs. Cehelsky and Rosales [5] presented an alternative version of the theory for
the case where derivatives are not necessarily bounded and shocks may be present. The
latter authors used an equation expansion method similar to the Chapman Enskog method
for the Boltzmann equation, rather than a multiple scales method, and incorporated a small
modification of the wave phases owing to the presence of multiple waves.

Webbet al [6] derived equations describing wave—wave interactions in two-fluid cosmic
ray hydrodynamics in a non-uniform background flow. In the gas dynamical limit, and for
the case of periodic waves propagating through a uniform background medium the latter
equations reduce to the Majda Rosales equations for three-wave resonant interactions in
adiabatic gas dynamics. Further developments of the theory are described in [7]. The
extension of the theory to resonant interactions in gas dynamics in several space dimensions
has been developed by Huntetral [8].

The main aim of this paper is to develop a Hamiltonian formulation of the Majda
and Rosales [1] equations describing the three-wave resonant interactions of periodic
sound waves and entropy waves in adiabatic gas dynamics propagating through a uniform
background medium. In section 2 the model equations obtained by Majda and Rosales
[1], and the conditions for three-wave resonant interactions are described. In section 3
Lagrangian and Hamiltonian aspects of the equations are discussed. In particular, we obtain
the Hamiltonian form of the equations for some of the lower-order harmonic interaction
cases, namely the first and second harmonic interactions, and the first, second and fourth
harmonic interactions. In section 4, the Lie symmetries and the conservation laws admitted
by a restricted version of the equations applicable for the case of a periodic saw-tooth entropy
wave profile are discussed. The symmetries are also used to obtain similarity solutions of
the equations. Section 5 considers numerical examples of the similarity solutions, including
a discussion on the similarity solutions obtained by Magtlal [9]. Section 6 considers the
Hamiltonian form of the Majda Rosales equations(in t) Fourier space, wherg is the
Fourier space variable corresponding to the fast phase vadabie¢he waves. The latter
equations are reduced to normal form in order to isolate the normal modes of the system.
Section 7 concludes with a summary and discussion.

2. The model equations

Majda and Rosales [1] considered the resonant interaction of periodic, weakly nonlinear
sound waves and the entropy wave in adiabatic gas dynamics in one Cartesian space
dimension. The Majda and Rosales equations were derived using weakly nonlinear
geometrical optics expansions of the governing equations for high frequency waves.

The basic gas dynamical equations consist of the continuity equation, the momentum
equation, the gas entropy equation, plus the adiabatic equation of state relating the gas
pressurep, = p.(p, S) to the gas density and entropyS. Majda and Rosales considered
the propagation of weakly nonlinear short wavelength waves about a uniform background
statep = po, u = 0, andS = Sy (# denotes the velocity of the gas along thexis), and
assumed a perturbation expansion of the form:

V= 1#((» + 61//(1) + 621/,(2) R (2.2)

wherey = (p, u, S) denotes the state vector of the gas, ansl the perturbation parameter
representing the wave amplitude. At lowest order in the perturbation expansion one obtains
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the standard eigenvector solutiofR; : j = 1,2, 3} and eigenvalue$x; : j = 1,2, 3}

of adiabatic gas dynamics, whekg = —a,, 22 = 0 andiz = a, are the eigenvalues
corresponding to the backward sound wave, the entropy wave and the forward sound wave
respectively (herei, = (ygpg/p)% denotes the gas sound speed, gnds the adiabatic

index of the gas).

From the second-order perturbation equations one obtains compatibility conditions on
the first-order perturbations by requiring the perturbation expansion is uniform for times
t < O(1/e) (i.e. it is required that?y @ < ey for timest < O(1/¢)). This leads to the
Majda Rosales equations:

1 21
U +uy +uug, — %Z / K (m6Os3 + n61, x)v(0y; x,1)do, =0 (2.2)
0

m 1 2
U — Uy + UV, + — — f K (mb3 + nby, x)u(fs; x,t)dos =0 (2.3)
n 2w 0

governing the backward(v) and forward (u) sound wave velocity perturbations.
Equations (2.2) and (2.3) correspond to the case of resonant periodic waves in which

. ij — wjt

6 = =123 (2.4)

€

correspond to the fast phase variable of thib wave mode andv; and k; denote the
frequencies and wavenumbers of the waves. Equations (2.2) and (2.3) apply to the case of
resonant periodic waves amd andn are integers characterizing the resonant interactions.
It is assumed in the derivation of equations (2.2) and (2.3)d#hetdv have period 2 and
have zero means in th&g. The constraint that andv have zero means can be lifted, but
leads to more complicated equations (see, e.g. Véla [6]). The period assumed for
andv can be chosen to be any positive consténin which case 2 is replaced byl in
equations (2.2) and (2.3).

In equations (2.2) and (2.3)

1
we Vet kivy 2.5)

k3U3 vV =
correspond to the velocity perturbatiomsandv; associated with the forward and backward
sound waves. The kernel

k2 8(12(92, x)

KO0 =4, (2.6)
represents the derivative of the density perturbatig@@-, x) associated with the entropy
wave. The velocity perturbations and gas density perturbations in the above equations are
normalized to the gas sound spegd= (ygpgo/,oo)% and densitypg characteristic of the
background state.

The integral terms in equations (2.2) and (2.3) represent the resonant interaction of
a sound wave with the entropy wave to produce a reverse sound wave, whereas the
uug, and vvy, terms are the Burgers self-wave interaction terms. Note that there is no
separate equation for the entropy wave, since the entropy wave fluctuations are frozen
into the background flow. Sincey = 0, K (6,, x) is completely determined by the initial
conditions. The fact that there is no generation of entropy wave disturbances by the three
wave interactions is a consequence of the fact that the entropy is a Riemann invariant of
the gas dynamical equations (Majda and Rosales, [1]).
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2.1. Resonance conditions

For resonant 2-periodic waves in the;, the frequencies; and wavenumbers; satisfy
the resonance conditions:
ko = nkq + mks wr = nwy + mws (2.7)

wherem andn are integers (see, e.g. Anii al [7]). Since the velocity perturbations are
normalized to the gas sound speed, the dispersion equations for the waves are:

w1 = —k]_ wo = 0 w3 = k3 (28)
corresponding to the backward sound wave, the entropy wave and the forward sound wave
respectively. Equations (2.7) and (2.8) imply that

2k—k21 =n zkk—zs =m (2.9)
for resonant-wave interactions. In terms of the wavelength of the wdygsquations (2.9)
imply

51 = 2£2|n| 53 = 2€2|m| (210)
so that the wavelengths of the sound waves are integral multiples of the wavelength of the
entropy wave for resonant waves.

2.2. The analogue of the Manley—Rowe relations

First note that equations (2.2) and (2.3) may be written in the form:

1 2
u,—l—ux—l—uug—%gf K(@m6 4+ né, x)v(E; x,1)de =0 (2.11)
0

m 1 2
v,—vx+vv9+——/ Kmé& +nb, x)u; x,1)dE =0 (2.12)
n 27'[ 0

where the variabl® in equation (2.11) refers to the phase of the forward sound wave,
whereas in equation (2.12) refers to the phase of the backward sound wave. It is of
interest to note that equations (2.11) and (2.12) may be written in the conservative form:

2 2
g+ <” n 1 / R(m9+ns,x)v(s;x,z)dg>=o (2.13)
0

0\ 2 m22r
9 (2 m 1 (¥
v,—vx—i—ag(z—i—nzzn/c) R(mé—i—n@,x)u(é;x,t)df) =0 (2.19)
where the equations:
k IR (0,
R(02, %) = ~2az(62, x) K(02,x) = IR (G2, x) (2.15)
4 002
relate the kernelR(6,, x) to the entropy wave density perturbatian(d,, x) and to the
kernel K (62, x).
Multiplying equation (2.11) byn?u and adding equation (2.12) multiplied yv and
integrating with respect t6 from 6 = 0 to 6 = 27 yields the equation:
s

P 27 m2u2 n2v2 9 2 m2u2 n2v2 m2u3 n2U3

9 ") "V e L I

a:(/o > T2 >+ax(/o 2 2 )+Z[ 3 3Lv+
(2.16)

where the sum over corresponds to shocks at the poifits- 9; that possibly occur in the
6 range: O< 6 < 2r. Equation (2.16) is the analogue of the Manley—Rowe relations for
three-wave resonant interactions of dispersive waves (see, e.g.&mild7]).
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2.3. Special forms of the equations

Below we discuss special forms of the equations which we consider in more detail in the
following sections. In particular we discuss the form of the equations for the case of a
periodic saw-tooth entropy wave profile éa which allows the evaluation of the integrals

in the three-wave resonant interaction terms in equations (2.11) and (2.12).

2.3.1. Case (a)m = 1 andn = —1. Equations (2.11) and (2.12) in this case reduce to:

2
u,+ux+uu9+i/ KO —-& x)vE; x,t)de =0 (2.17)
2 0

2
v,—vx—i—vvg—%f KE -0, x)uE;x,1)ds =0. (2.18)
0

Pego [10], Majdaet al [9] and Hunter [11] considered analytical and numerical solutions
of equations (2.17) and (2.18) that were independent of the long space varidbte the
model equations (2.17) and (2.18) the wavelengths of the sound waves are twice that of the
entropy wave (see equations (2.10)). Pego [10] derived periodic, smooth analytic solutions
of equations (2.17) and (2.18) for the case of a periodic kekh@l) = sind (see also the
discussion by Anileet al [7]) in which the resonant interactions counteract the tendency of
the solutions to form shocks due to the nonlinear Burgers terms.

For the case of a periodic saw-tooth entropy profile:

R®) =a® —m) forO<6 <2rn (2.19)

(a is a constant) periodically extended with a period af i 6, the kernelK () has the
form:

K(@):a{l—zn i 8[9—2}171]}. (2.20)

n=—00
Substituting kernel (2.20) into equations (2.17) and (2.18) yields the coupled Burgers
equations:

u, +uy +uug —av@; x,t) =0 (2.21)
vy — Uy +vvg +au@; x,t) =0 (2.22)

governing the resonant interaction of the sound waves. The relevant solutions of
equations (2.21) and (2.22) must have zero means, and be periadic in

2.3.2. Case (b)m = 1 andn = 1. In this case the resonant interaction equations (2.11)
and (2.12) reduce to:

u,—l—ux—i—uug—ZZ:-T‘/(;ZHK(O—%E,)C)v(E;x,I)dS=0 (2.23)
1 2
v,—vx—i—vvg—l—g/o KO+& xuE;x,1)ds =0. (2.24)
For the saw-tooth entropy wave profile (2.19), these equations reduce to:
u, +uy +uug +av(—0;x,t) =0 (2.25)
v, — U +vvg —oau(—0;x,1) =0. (2.26)

The interesting point to note in this case is that the coupled Burgers equations (2.25) and
(2.26) are now non-local equations, whereas the Burgers equations (2.21) and (2.22) for the
case §) m = 1 andn = —1 are local equations.
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2.3.3. Case (cjn = 1 andn = —2. For the saw-tooth entropy wave profile the kernel
K (0) is given by equation (2.20), and the Burgers equations (2.11) and (2.12) reduce to:

Uy + uy + uug — a[v(%@; x,t)+ v(%@ +m;x,0)] =0 (2.27)
VU — Uy + vvy + %au(Z@; x,1) =0. (2.28)

Again, we obtain non-local coupled Burgers equations dfoand v. In this case, the
resonance conditions (2.9) yield

ko ko
_re ke = %
4 S

so that the backward sound wave has a wavelengtty ef 4¢,, and the forward sound
wave has a wavelength é§ = 2¢, where/; is the wavelength of the entropy wave.

ky = (2.29)

3. Variational formulations

In this section we obtain Lagrangian and Hamiltonian variational principles for the Majda
and Rosales equations (2.11) and (2.12). We illustrate some of the complications that can
arise for differentn andn by considering the examples @) = 1 andn = —1 and (ii)
m=1andn = -2.

3.1. Casen =1 andn = -1

The basic equations of interest are equations (2.17) and (2.18), namely

uy + uy + uug + K[v] =0 (3.1)
v — vy +vvg — Ki[u] =0 (3.2
where the integral operatoi and KT are defined by the equations:

R 1 2

K[v] = - / KO —& x)vE; x,1)dé (3.3)
21 0

R 1 27

Kiul = = / K (& — 6, x)u(E; x, 1) dt. (3.4)
2 0

In equations (3.1)-(3.4K " is the adjoint of the operatol? with respect to the standard
inner product

21
(f. 8) 2/0 f(§)g(&)dé. (3.5)

To obtain a Lagrangian variational principle for these equations, first introduce potential
variablesU (8; x, t) and V (@; x, t) such that

u="U, v="V,. (3.6)
By noting that the operator& and KT commute withD, = 9/36, i.e.

Dy(K[VD) = K[DyV]  Do(K'[U]) = K'[DsU] (3.7)
one finds that equations (3.1) and (3.2) may be written in the potential form:

Dy(U; + U, + U2+ K[V]) =0 (3.8)

Dy(V, — V. + V2 - K'[U]) = 0. (3.9)
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Equations (3.8) and (3.9) may be obtained from the variational principle of extremizing the
Lagrangian variational functional'

L —/ dt/ dx d9£ (3.10)
where
—2(UpU; + Vo V) — 2(UxUy = ViVi) — 2US + V) + L(RT[UIV, — K[VIUp)
(3.11)

is the Lagrangian density.
Equations (3.1) and (3.2) may also be written in the Hamiltonian form:

oH SH
u; = D@ ( Su ) vy = D@ ( sv > (312)

where the Hamiltonian functional has the form:

00 2
H:/ dx/ doH

—c0 0 (3.13)
H = —%(u3 +%) — %(uDglux - vD;le) - %{ule[Dglv] — vIeT[Dg’lu]}

and D;lf = f9 do £(©). In equations (3.12)D, is the symplectic operator (e.g. [12]).
Alternatively, using the Poisson bracket for function&laand G:

(F,G} = /d909< > (3.14)

where (1, u?) = (u, v) equations (3.12) may be written in the form:
u; = {u, H} v, = {v, H}. (3.15)

For the case of a saw-tooth entropy wave profile (2.19), the Lagrangian déhgity
equation (3.11) takes the form:

Lo =—3UsU; + VaV)) = 3(U,Us = ViVg) = 5(US + V§) = 3a(UVs = VUs)  (3.16)
and a similar result applies for the Hamiltonian density in equations (3.13).

3.2. Casen =1 andn = -2

In this section we show the kind of complications that arise for cases whegel and

n # —1. The examples of saw-tooth entropy profiles discussed in equations (2.25) and

(2.26) form = 1,n = 1 and in equations (2.27) and (2.28) for the case- 1 andn = —2

lead to non-local coupled Burgers equations for the backward and forward sound waves.
Equations (2.11) and (2.12) for the case= 1 andn = —2 reduce to:

27
u,—i—ux—i—uug—i—%/ K@® -2, x)v(E;x,t1)de =0 (3.17)
0

2
Uy — Uy + Vg —i K(E —29, x)u(g; x,1)ds = 0. (3.18)
4 0

For the case of a saw-tooth entropy wave profile (2.19), equations (3.17) and (3.18) reduce
to equations (2.27) and (2.28), in whieh9; x, 1), u(20; x, t), v(0; x, t), v(%@;x,t) and
v(%@ + m; x, t) play a role. Equation (3.17) may be written in the form:

1 21
u,—i—ux—l—uug—i-gf K(B—n;x,t)[v(%n;x,t)—i—v(%n—i—n;x,t)]dn=0. (3.19)
0
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Hencev(%n; x,t) and v(%n + m; x,t) also play an important role in equations (3.17) and
(3.18).
Motivated by the above observations we introduce new variables:

210 x,1) = 2:0(36; x, 1) 22(0; x, 1) = 2:0(36 + 73 x, 1) (3.20)
where 0< 6 < 27. Note thatv(9; x, t) can be reconstructed from(9; x, t) andz(0; x, t).
The functionsu, z; andz, satisfy the coupled equations:

U+ uy +uug +2 2K[z1422] =0

21 — 21 + 2%21219 - 2—%[21‘[”] =0 (3.21)

2o — 220 + 222972 — 2 2K 1[u] = 0.
Note thatz; andz, satisfy the same partial differential equation. One possible solution of
these equations ig = z», although this will not generally be the case, unlegs x, r) has a
period ofr in 6. If v(@; x, t) does not have a shock@t= 7, thenz,(2m; x, 1) = z2(0; x, 1),
and higher-order derivatives of would match ab = 7. Using the notation:

V=) Y=g (3.22)

(the superscrip” denotes the transpose), equations (3.21) may be written in the matrix
form:

W oA By Ry =
o FA - SDiBYY) + Ky =0 (3.23)

where the matriced andB are given by

1 0 O
A:(O -1 0)
0O 0 -1

1 0 0 (3.24)
B = (o 2: 0 )
0 0 2
and the matrix operatdi has the form:
. 1/ 0 K K
K:1<—IgT 0 0). (3.25)
22 \_Kt 0 0

The operator and K are defined in equations (3.3) and (3.4) whéfeis the adjoint of
K. The matrix operator in equation (3.25) is skew adjoint Ké= —K7).
Introducing the potential variables:

V= (U, Z1, Z))" Vo= Wy = (u,21,22)" (3.26)
equations (3.23) may be written in the potential form:
Dy(¥, + AW, + 1B-WZ + K-w) = 0. (3.27)

In the derivation of equation (3.27) we use the fact that the operataasd K commute
with Dy (see equations (3.7)). The notation:

w2 = (U2, 72, Z5)" (3.28)

is used in equation (3.27).



Three-wave resonant interactions in gas dynamics 4235

Equations (3.27) may be obtained by extremizing the variational functional

00 00 21
L=/ d;/ de [ do L (3.29)
—00 —00 0

where

L=l w - lul.Aw, — 1ulKw - Lwd)T.B.w,. (3.30)
Alternatively in component form:
L=—2UgUs + Z1wZy + ZpZ2) — 3(UgUy — Z19Z1c — Zo9Zoy)

27Uy R[Z1 + Z2] — (Zug + Zop) KU} = 2[U + 22 (Z, + Z3))].

(3.31)

The variational principle (3.29) yields equations (3.21). Note, however that further
constraints may need to be applied to the variational functional (3.28)6ifx, t) is to
be smooth ab = .

Equations (3.23) can also be written in the Hamiltonian form:

SH
=Dy| — 3.32
v=0i(5) (332)
where the Hamiltonian functional is given by:

o0 2
H = / d.x/ do [— 3y A, — Ul Kew — LuHT.Bawg].  (3.33)
—00 0

The above development for the case= 1, andn = —2 shows that form # 1,n # —1,
it is necessary in general to introduce new variables to reduce the equations to Hamiltonian
form. Clearly the above analysis can be generalized for more genesadn.

4. Symmetries and conservation laws

In this section we discuss the symmetries and conservation laws for the coupled Burgers
equations (2.21) and (2.22) governing the resonant interaction of the backward and forward
sound waves for the case of a saw-tooth entropy wave profile described by equations (2.19)
and (2.20). The symmetries are also used to derive similarity solutions of the equations.
We restrict our attention to solutions which are independent of the long space variable
Thus, the equations of interest are:

u; +uug —av(@,t) =0 4.2)

v +vvg +au(@,t) =0 (4.2)
wherew is a constant.

Equations (4.1) and (4.2) may be obtained from the variational principle (see

equations (3.10)—(3.16)) of extremizing the functional:

00 2r
L= / dr do L,
—00 0 (43)
Lo =—=3UsU; + VoVi) — §(US + V) — 3a(UVy — VUy)

whereu = Uy andv = V4. The potential form of equations (4.1) and (4.2) are also of
interest are, namely:

U+3U7—aV =0 (4.9)
Vi + 3Vi+aU =0. (4.5)
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The Lie point symmetries admitted by equations (4.1) and (4.2), and equations (4.4)
and (4.5) are discussed in section 4.1. In section 4.2 conservation laws for the equations
are obtained by using the variational formulation (4.3) of the equations in conjunction with
Noether's theorem. Section 4.3 considers similarity solutions of the equations and their
relation to analytic solutions obtained by Majdaal [9].

4.1. Lie point symmetries
Equations (4.1) and (4.2) admit infinitesimal Lie point symmetries of the form:

' =1t+et' 0' =0+ e’ u =u-+en" vV=v+en’ (4.6)
where the infinitesimal generato(s’, £, n*, n*) are given by:

£ =a £% = ay + asb n" = azu n’ = agv 4.7)

and a1, a, and az are constants. The corresponding point Lie algebra has the general
isovector

X=$l%+59%+ﬁ"%+nv% = a1X1+ a2Xz +asXs (4.8)
where
_ d
Xp= (4.9)
a0

X0 9 9 9
3=%0 T TV
are the basis elements of the Lie algebra. The operatqrsX, and X3 correspond
respectively to the time translation symmetrystranslation symmetry and a ‘stretch’
symmetry of equations (4.1) and (4.2).
Using results (4.7)—(4.9) one can show that the potential equations (4.4) and (4.5) admit
the Lie symmetry operators:

o
Y= %
3
Yo = —
398 , , (4.10)
Ys=0— +2U-° +2vV-°.
=% T T ey

. a 0
Yy =Ys = sin(at +8) — + coSat + §) — .
4=7Ys (@t +8) 7 + codat +8) o

The symmetry operator¥;, Y, and Y3 in equations (4.10) correspond to the symmetry
operators{X,, X, X3} of equations (4.9) associated with equations (4.1) and (4.2). The
operatorY, in equations (4.10) corresponds to the fact that the potential equations (4.4) and
(4.5) remain invariant under the transformations:

U =U + esin(at + §) V' =V + ecoqat + 8) (4.12)

which are gauge symmetries.
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4.2. Conservation laws

Using the symmetries (4.10) of the potential equations (4.4) and (4.5), the variational
principle (4.3) and applying Noether’s theorem (e.g. Bluman and Kumei [13], Olver [14])
leads to four conservation laws associated with equations (4.1) and (4.2) and (4.4) and (4.5)
of the form:

D,E; + DyF; =0 j=11)4 (4.12)

whereD,; = 9/9t and Dy = 9/96. The conserved densiti¢%;} and fluxes{F;} associated
with each of the symmetries are listed below:

Ey=—1w’+v% — Ja(Uv—Vu)

4.13

Fr=—3@* +v" + ta(Vu? — Uv?) )
E, = 1 I/lz + U2

. 12( 3 3) (4.14)
F, = §(” +v°)
Es = 2(0u® +6v?) — (Uu + Vv) + 1D u? +v?) (4.15)
F3 =30’ + %) — 3(Uu? + Vv?) |
E4 = usin(at + 8) + vcodar + §)

4 (4.16)

Fy = L[u®sin(at + 8) + v cosat + §)].
The conserved densitif; associated with time translation invariance in equations (4.13)

corresponds to the Hamiltonian density, i.e. equations (4.1) and (4.2) may be written in the
Hamiltonian form (3.12) where

2 2
H=/ do Elz/ a0 [—2@® + %) — Ja(Uv — Vu)] (4.17)
0 0

is the Hamiltonian functional.

The conservation law associated withtranslation invariance (equations (4.14))
corresponds to the Manley—Rowe relations (2.16) discussed in section 2. The conservation
law associated with the stretch symmeltgy(equations (4.10) and (4.15)) is the least obvious
law. The conservation law (4.16) associated wijtmight have been expected from the fact
that the linearized version of equations (4.1) and (4.2) admit the trigonometric solutions:

u = sin(ar + §) v = coSat + §). (4.18)

4.3. Similarity solutions

Classical similarity solutions of equations (4.1) and (4.2) may be obtained by first integrating
the group trajectories:

G0 _di_o 19
g & g Y
to obtain the group invariants (see, e.g. [13]). In the present case the infinitesimal generators
of the point Lie group are given by equations (4.7), so that equations (4.19) reduce to:
dr do du dv
a1 ar+aszd asu  azv’
Integrating the group trajectories (4.20), assuming# 0 andasz # 0 yields the group
invariants:

(4.20)

Ji=In |6 — 6| — ut Jo (421)
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where
=" g=-"= (4.22)
aq as
From equations (4.21) and (4.22), it follows that equations (4.1) and (4.2) possess similarity
solutions of the form:

u=(0—"6o)f(n) v = (0 —6o)g(n) (4.23)
where

n=1In|0 — 6| — ut (4.24)
is the similarity variable.  Substituting the solution ansatz (4.23) and (4.24) into
equations (4.1) and (4.2) yields the ordinary differential equations:

(f=wfm=—(~ag)  (g—wgm =~ "+af). (425

Since equations (4.25) do not depend explicitly ;grthe equations may be combined to
yield a single ordinary differential equation

df _ (f2-ag)g—w

dg (82 +afN)(f —w
in the (f, g) phase plane. It is of interest to note that equation (4.26) is an example of
Darboux’s equation (e.g. Ince [15, p 29]; Goursat [16, p 29]), i.e. equation (4.26) may be
written in the form:

df Nf-M

dg ~ Ng-L

(4.26)

(4.27)

where
M = puf?+ag® — pog
N = fg (4.28)

L = ug?—af?+ paf.
The general theory of Darboux’s equation is described in [15, 16], where further reference
to the original work of Darboux may be found.

The general character of the solutions for equations (4.25) and (4.26) may be deduced
from an analysis of the critical points of equation (4.26) in tlifeg) phase plane. This is
carried out in section 5. For generaland «, we have not been able to obtain an analytic
integral of equation (4.26). However, in the special cas@si{ — 0 (|6g] — oo, u — 0)
and p) a; — 0 (u — oo0) Majda et al [9] obtained first integrals. The Lagrangian and
Hamiltonian structure associated with these solutions are discussed below.

4.3.1. Special solutions.

Case (a): a3z = 0. The similarity solutions foraz = 0 may be obtained from
equations (4.22)—(4.25) by a suitable rescaling of the variables. However, it is simpler
just to re-integrate the group trajectories (4.20) with= 0, to obtain the travelling wave
similarity solutions:

u=u(n) v =v(n) (4.29)

where the equations:
n=6— it A= 2 (4.30)
ax
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define the similarity variable.
Substitution of the solution ansatz (4.29) and (4.30) into equations (4.1) and (4.2) yields
the equations:

w—Mu'(n) =av (v — V() = —au. (4.31)
Equations (4.31) may be combined to yield the differential equation
du 3 v(v—A)
dv u(u — A)
with integral

H= %(u?’ +%) — %A(uz +?) (4.33)

(4.32)

whereH is the integration constant. Integral (4.33) was obtained by Meij@&[9]. Below
it is shown thatH is the Hamiltonian for equations (4.31).
Introducing the canonical variables:

a(u — )2 (v—2)2

=5 = 4.34

q1 0 pP1 200 ( )
(wherea is an arbitrary constant), equations (4.31) may be written in the Hamiltonian form:
dg1  9H 1
d—n = 5 =auz?v
: , (4.35)

dp1  0H _  a?u
dp  9q1  a

Using results (4.33)—(4.35) it follows that equations (4.31) may also be obtained by
extremizing the variational functional

—A 2 —A 3 3 A 2 2
L=/ WERZR) iy L EFVT L HEEVN ) a36)
20 3 2
Alternative canonical variables {@1, p1} can be chosen. Itis straightforward to verify that
v —A)%(u — A
q2=u P2 = % (4.37)
o

are also canonical variables for equations (4.31) with Hamiltonian (4.33).

Case (b):a; = 0. Integrating the group trajectories (4.20) for this case yields similarity
solutions of the form:

u=(0—"06o)f(r) v = (0 —060)g() (4.38)

wheren = ¢ is the similarity variable. Substitution of the solution ansatz (4.38) into
equations (4.1) and (4.2) yields the ordinary differential equations:

f==(f~-ag) &0 =—+af). (4.39)
Equations (4.39) may be combined to yield the differential equation

df  f?—ag

- = 4.40

dg g2+af ( )

in the (f, g) phase plane.
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Majdaet al [9], stimulated by a suggestion from Professor Cheng at MIT obtained the
integral
2 2

1 o r
H=-Q+aln|Q — —— — — 4.41
Pt talni®l=50 =59 (4.41)

of equation (4.40), where
Q=f-g—« r2=f2+g2. (4.42)
Introducing the variables
1

g=af+1-a)g p=—— (4.43)
f—g—«a
wherea is an arbitrary constant, equations (4.39) may be cast in the Hamiltonian form:
dp _ _9H __ f+¢g
d  9q f-g-—ua
& oH (4.44)

i [a(f*—ag)+ (1 —a)(g” + af)]

where the HamiltoniarH is given by equation (4.41). The above concludes our discussion
of the Hamiltonian and Lagrangian variational formulations of the solutions obtained by
Majdaet al [9]. In the next section we give numerical examples of the similarity solutions

and discuss the phase plane structure of equations (4.26), (4.32) and (4.40).

5. Solution examples

In this section we investigate the phase plane structure of the similarity solutions obtained
in section 4.3. The physically relevant solutions are required to be periodiqanperiod

of 27 was assumed in section 3, although this normalization for the period is not essential),
and to have zero means ferand v averaged over the period. In section 5.1 we discuss
solutions that depend of and:. We begin by discussing two solutions investigated by
Majda et al [9] (case &) az = 0, and caseh) a; = 0 of section 4.3), and then go on to
discuss the general similarity solutions with# 0 andas # 0. Section 5.2 discusses how

the solutions of section 5.1 may be generalized to include a dependence on the slow space
variablex.

5.1. Solutions dependent érand ¢

5.1.1. Caseuz = 0. The solutions of interest are the travelling wave solutions with
similarity variablen = 6 — Ar, described by equations (4.29)—(4.33). Figure 1 shows the
contours of the Hamiltonian

Ho = Ju®+v% — Sa@?® +v?) (5.1)
in the (u, v)-plane (see also [9], figure 30). There are four critical points of the differential
equations (4.31) and (4.32), namely the poiAt®, 0), B(x,0), C(x,A) and D(0, 1) in
figure 1. The detailed structure of the trajectories in the vicinity of the critical points may
be ascertained by linearizing equation (4.32) about these points. The goBntsl C are
centres, whereas poinsand D are saddles. The orbits of most physical interest in figure 1
are the periodic orbits enclosed within the critical contour EFBBE £ —13/6). From
equations (4.31):

o 1d ((w—-2)? o 1d (w—-n?
U_adn( 2 ) u__adn( 2 ) ©-2)
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Figure 1. Contours of the Hamiltonian (5.1) for the travelling wave solutions of
equations (4.29)—(4.32) corresponding to a saw-tooth entropy wave profile for thé eade
The critical contours DEFBD and GBDG have a heighttbt= H. = —13/6.

Hence, the periodic orbits within EFBDE have zero meansand (v). Note that the orbits
about the other centre critical poidt do not have zero means, since/dn and d/dn
diverge asu — A andv — X respectively. This accounts for the reversal of the orbits
about the horizontal line = A and vertical lineu = A.

The equation of the critical contou#. = —13/6 that passes through the critical points
B(x,0) and D(0, 1) consists of the straight line

u+v=~x (5.3)

connecting the critical points, and the curved part of the contour described by the algebraic
curve

u2+v2—uv—%k(u+v+k)=0. (5.4)

It is of interest to note that the periodic orbits that lie within the critical contour EFBDE
have contour heights in the ranger3/6 < Hy < 0, where the contour heightly = 0
corresponds to the centre critical poifit

One can show that the peridd of the periodic orbits within EFBDE is a monotonic
increasing function ofy, of the formT = (A /)t (Hy/H.) whereH, = —13/6 is the value
of Hp for the critical contour. The smallest period orbit is for the orbit EFBDE, and the
largest period is obtained for the limiting, zero radius orbit abéutThe periodic orbits,
and an expression fdf are discussed in more detail in the appendix.

Figure 2 shows plots ofi(n) and v(n) for a periodic travelling wave solution with
Ho = —0.13, « = 1, A = 1.05, for which the wave period = 2x. Note the periodic
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exchange of energy between the two sound waves. The travelling wave corresponding to
the orbit EFBDE in figure 1, has a cusp in the profileugh) corresponding to poinD
in figure 1. It is of interest to note that the conservationHf throughout the motion is
related to thed-translation conservation law:
a1 , a1l 5 4
i —|Z =0 5.5
8t|:2(u +v)i|+89|:3(u + v°) (5.5)
obtained in equation (4.14). Equation (5.5) is the wave action conservation law, and is
also related to the Manley—Rowe relations (2.16). Thus, the constariy thiroughout the
wave may be thought of as a balance between the conserved action dﬁwsitg(u2+v2)

and the action flux?, = 2 (u®+ v).

5.1.2. Casei; = 0. The solutions of interest in this case are described by equations (4.38)—
(4.42), namely
u= ()0 — 6o v =g(@)(® — th) |6 — 6ol <7 (5.6)

extended periodically i® with a period of 2. These solutions have an array of shocks
located at) = 6y + (2n + 1) wheren takes on integer values. The solutions jolnd g
satisfy equations (4.39):

dg  g*+af
fO==(f-ag) g0 =—-("+af) — =" (57
df  f?—ag

07 .

05

03
um) o

01

03

-0.5 L 1 L

0 /2 n 32 2%
n

o7 T

65 b

03}
V() o1

o1 F

03 f

05 . .

0 w2 % 3r/2 2r

Figure 2. Plots of u and v versusn for a periodic travelling wave solution described by
equations (5.1) and (5.2). The Hamiltonian has a valué/gt= —0.13,« = 1 andA = 1.05.
The period of the wave if or n is T = 2.
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This solution was studied by Majdzat al [9].
At a shock inu andv, the Rankine Hugoniot conditions for equations (4.1) and (4.2)
require that the shock speed satisfy

s = %(u_ +uy) and/or s = %(v_ +vy) (5.8)

whereus = u(0+,t), v+ = v(by+, t) denote the values af andv on either side of the
shock located a# = 6;. The Lax entropy conditions (Lax [18]; Chorin and Marsden [19])
require eithem_ > u, or v_ > v, or bothu_ > u, andv_ > v, at the shock. In the
present case of adiabatic gas dynamics, the Lax entropy conditions are equivalent to the
requirement that the shock is compressive. The conditions u, and/or v_ > v, used

in conjunction with the wave action integral (2.16) with= 1 andn = —1 requires

9 T 42 402 ud + 037
ar(/o 5 d@)_—Z[ 3 ] <0 (5.9)

§ Os+

so that the wave action integral is a decreasing function of time, owing to the presence of
shocks. The entropy conditions in the present example require

f@®) >0 and g(@®) > 0. (5.10)

Conditions (5.10) appear to be unnecessarily restrictive, since the wave action will decay if
the right-hand side of equation (5.9) is negative definite.

Figure 3 shows contours of the Hamiltonian integral (4.41) of equations (5.7) in the
(f, g) phase plane for the case= 1 (compare with figure 1 of [9]). The autonomous
differential equation system (5.7) in thg, g) phase plane has a centre critical point at

Figure 3. Contours of the Hamiltonian integral (4.41) for the periofievave solution obtained
by Majdaet al [9] described by equations (5.6) and (5.7) for the case 1.
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Figure 4. A schematic diagram of the evolution of arwave, periodic shock solution described
by equations (5.6) and (5.7), where the parameéjet 0. The shocks occur & = (25 + 1)x
(s integer), and correspond to the Hamiltonian contour helght= 0.015 displayed in figure 3.

A(0, 0) and a saddle critical point &(—«, o). Note thatg = f — « is a special solution

of the equation for d/df in equations (5.7). The Hamiltonian integral (4.41) diverges as
g—> (f—a),with H - +ocoasg — (f —a); butH - —oco0 asg — (f —a)_. Figure 4
shows the evolution of atv-wave periodic shock solution faty = 0. Shocks occur at

0, = (2s + 1)z (s integer) and the amplitude of the wave is determined byHAhe 0.15
contour in figure 5 at three different values gfwith + = 0 corresponding to the instant
when f = 0 andg > 0 (case 4)), t = it wheng = 0 and f > 0 (case €)), and at an
intermediate time;: 0 < #; < 1y (case b)). Attime+r = 0, u = 0, andv consists of an
N-wave profile in@ with shocks. As time increases the forward waveevelops into an
N-wave as part of the energy in the backward wave is transferred to the forwardiwave
At some later time = t, u is a fully developedV-wave andy = 0. The shocks in this
model have zero spead= 0. Majdaet al [9] argue that after the critical time when=0
(when the entropy conditions (5.10) first fail), the solution evolves into a cusped rarefaction
wave. They also argue that since the shocks andv are locked together, the solution is
structurally unstable to perturbations.

5.1.3. Case; # 0 andaz # 0. In this case the similarity solutions farandv are given
by equations (4.23)—(4.26), namely

u=(0—060)f(n) v=(0—06p)g(n) (5.11)
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Figure 5. Schematic diagram of the character of the critical points of the differential
equation (5.13) for g/df depending on the parametefs, x). The critical points in the

(f, g) phase plane are located at the poiR®, 0), B(u, i), C (i, u?/a), D(—u?/a, 1) and

E(—a, @). The points are either saddles, centres, spirals or nodes. The parameter space is split
up into eight sectors by the lings=0, « =0 andp = +o.

where
n=Inl6 -6 —put  u=22 gy=_2 (5.12)
a as
and f andg satisfy the differential equations:
, fP-og : g +af dg (&% +af)(f—w) _ N
m=-F— nm=-———" - = = 5.13
s f—n s g§— i df  (f?-eg)g—w) D 5-13)

where the last equation describes the solution trajectories iGfthe phase plane.
Before discussing the phase plane trajectories of equations (5.13) it is instructive to

consider the limiting behaviour of the similarity variabjdan the limits wherez; — 0 and
az — 0.

5.1.4. Limitaz — 0. Consider the rescaled similarity variabjé:

A
— D A= —6ou |im0n; =6 — Af. (5.14)
n—>

Note that in the limit ag. — 0, the variabley; becomes the the similarity variable for the
travelling wave solution of equations (4.29)—(4.32).
The solutions (4.23)—(4.26) far andv may be written in the form:

u = F(n7)explut) F(n7) = —oexpn) f(n)

! ! (5.15)
v = G(n7) explur) G(n7) = —o expn)g(n)
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whereo = sgntp) is the sign of9y and F and G satisfy the equations:

dr aG — uF dG aoF +uG (5.16)
dp*  exp(—un* /M F — A dp* — exp(—un*/A)G — A '
where we use the notatioyf = nj.. Lettingu — 0, equations (5.16) reduce to the travelling
wave equations (4.31) far = F(n*) andv = G(n*).

5.1.5. Limita; — 0. In this limit we consider the rescaled similarity variabjg, and
functions F (%) and G (n%):

My = o Jm ny =t Fny) = f(n) Gary) = ). (5.17)
In the limit asx — oo the functionsF and G satisfy the differential equations (4.39) for
the N-wave solutions of [9].

5.1.6. Phase plane trajectoriesThe differential equation (5.13) forgdd f in general has

five critical points in the( f, g) phase plane where the numeradrand denominatoPD on

the right-hand side of equation (5.13) fog Ml f are simultaneously zero. The character of
the critical points depends on the relative values @nd . The critical points are located

at the pointsA (0, 0), B(u, ), C(, u?/a), D(—u?/a, u) and E(—a, ). The character of

the critical points may be determined by linearizing the differential equations (5.13) about
the critical points. A schematic diagram of the character of the critical points depending
on the values ofr and i is given in figure 5. Linearizing the differential equation (5.13)
about the critical points shows that(0, 0) is a centre;B(u, i) is a centre ifu? < o but

16 13 -1 09 07 -05 -03 -01 01 03 05 07 09 1.1

Figure 6. Phase plane trajectories of the differential equation system (5.13) ifthe plane
for the casex = 0.5 ande = 1. The corresponding similarity solutions farand v are given
by equations (5.11).
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Figure 7. Same as in figure 6 except= 2 ando = 1.

a saddle ifu? > «?; point E(—a, «) is a node ifu? < o?, but a saddle ifu® > o2. Points
C and D are more complicated in their behaviour. Paif, 1?/a) is a spiral point in the
parameter regime between theaxis and the linex = o (i.e. O<a <poru <o <0); a

node if (o, ) lies in the regime between the-axis and the lingt = —a (i.e. —u <a <0

or 0 < @ < —p), and a saddle ifa| > |ux|. Similarly, point D(—u?/«, 1) is a node if
(a, w) lies in the region between the-axis and the lingx = «; a spiral point if(«, 1) lies

in the region between the-axis and the lingx = —«; and a saddle ifa| > |u|.

Figures 6 and 7 show typical phase space plotsffand g obtained by solving the
differential equations (5.13). Figure 6 shows phase plane trajectories for thex cask
and u = 0.5. The critical pointA is a centre;B is a centre; point& and D are saddles,
and pointE is a node. The phase plane trajectories are similar in many respects to the
travelling wavephase plane trajectories in figure 1.

Figure 7 shows the phase plane trajectories for the differential equation system (5.13) for
a case in whichu > o, namelyu = 2 anda = 1. In this case linear critical point analysis
indicates thatA (0, 0) is a centre B(u, w) is a saddleC (i, u?/a) is a spiral,D(—u?/a, 1)
is a node andE (—«, «) is a saddle. Note that the trajectories abag, 0) are spirals. The
phase plane trajectories abadtare somewhat similar to those for thé-wave periodic
shock solution displayed in figure 3 (— oo, 6p = —A/u fixed, @ = 1).

Figure 8 shows plots of the similarity solutions o€, r) andv(0, ¢r) versusé at two
time instantsr = 0 ands = 1, = 10In(1.25 = 2.231 using the parameteis= —0.1x,

u = 0.1 anda = 1. The full curves giva:(9, 0) andv(9, 0) whereasu (9, t1) andv(8, t;)
are given by the broken curves. Fpr > 0, the wave progresses outwards from the
central pointy = n in both directions and grows in amplitude as it progresses. Linearizing
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equations (5.16) yield the approximate small amplitude solutions

. o
sin ( In — at)
H (5.18)
o
cos( In - at)
"

for u and v, which are similar to the solutions far and v displayed in figure 8. The
solutions in figure 8 do not have zero means with respect &veraged fromp = 0 to

6 = 27. However, it may be possible to construct physically relevant solutions of the
above form that are periodic with periodrdn 6 and with zero means with respect 4o

by inserting shocks. In any event the type of solutions described by figures 6—8 show how
the travelling wave solutions (figures 1 and 2), and Maevave, periodic shock solutions
(figures 3 and 4) are special limits of the more general solutions of figures 6-8.

0 — 6o 0 — 6o

o
6 — 6o

o

u@,t) =ro

0

— 6o

%
v(0,1) =10

0

5.2. Solutions dependent énr and x

The solutions dependent éhand¢, discussed in section 5.1, can be generalized to include
a dependence on the long space variablg-or the case of a periodic saw-tooth entropy
wave profile (equation (2.19)), the solutions for the backward and forward wave velocity

perturbations: andv satisfy equations (2.21) and (2.22). Equations (2.21) and (2.22) admit
solutions of the form:

u=uz,0) v =v(z,0) (5.19)

0.02

001 |
U oo}

.01 1

2n

0.02

001 | HE

-
oot}

002 —=

Figure 8. Plots ofu(6, t) andv (6, t) versusd corresponding to the similarity solutions (5.15)

for two time instantg = O (full curve) andr = 11 = 2.231 (broken curve) in whicl¥ (n*) and
G (n*) satisfy equations (5.16). The solutions #¢,*) andG (»*) are foru = 0.1, . = —0.1r,
a =1, with F =0 andG = 0.02 atp* = 0.
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where
7 = vx + wt (5.20)

andv andw are constants. The solutions of section 5.1 correspond to solutions of the form
of (5.19) in whichv = 0 andw = 1. Solutions of the so-called signalling problem in which
u=u(x,0) andv = v(x, 6) have been discussed by Ani¢ al [7].

Substituting the solution ansatz (5.19) and (5.20) into equations (2.21) and (2.22) results
in the equations

(w+v)u, + uug —av =0
5.21
(w —v)v, +vvg +au =0. ( )

Equations (5.21) admit the same infinitesimal Lie point symmetries as the Lie point
symmetries of thé and: dependent solutions discussed in equations (4.6)—(4.9), except
is replaced by,. Hence, equations (5.21) admit similarity solutions analogous tga&thg
dependent solutions discussed in sections 4 and 5.1.
The simplest solutions of equations (5.21) are probably the travelling wave solutions of
the form
u = u(n) v =v(n) (5.22)
where
n=0—iz=0—A(vx + wt) (5.23)
is the similarity variable and is a constant. Substituting the solution ansatz (5.22) and
(5.23) into equations (5.21) yields the ordinary differential equations:
[ — 2w+ V] (n) = av [v—2A(@w—v)]V () = —au (5.24)
for u andv. From equations (5.24)
du  v[v—A(w—v)]
dv ufu—r(w+v)]
is the form of the corresponding differential equation for the solution trajectories in the
(u, v) phase plane. Equations (5.25) have the Hamiltonian integral
H= %(u3 +%) — %k[(a) +v)u? + (0 — ). (5.26)
One pair of canonical variablegq, p) for the Hamiltonian system of differential
equations (5.24), with Hamiltonian (5.26) are:

_ alu — AMw + v)]? b= [v—A(w—V)]?

(5.25)

22 2a%a (>:27)
wherea is an arbitrary constant. The canonical variables (5.27) are the natural generalization
of the canonical variable&;;, p;) of equations (4.34) for théd, r)-dependent travelling
wave solutions discussed in sections 4.3 and 5.1.

Figures 9 and 10 show examples of phase plane plots of the solutions of equations (5.24)
and (5.25) for two representative cases. Figure 9 shows a case inavhich > 0 (0 = 1,
v = 0.7 andx = 1), which corresponds in the long scale sense to a supersonic travelling
wave moving in the negative-direction with phase velocity, = —1.4286e, where
¢ is the gas sound speed (see equation (5.23)). Figure 10 shows a further example that
corresponds in the long scale sense to a subsonic travelling wave moving in the negative
x-direction ¢ = 0.7, v = 1, andx = 1), with phase velocity, = —0.7ce,. Figures 9 and
10 and equation (5.25) have four critical points in thev) phase plane located at(0, 0),
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Figure 9. Contours of the Hamiltonian integral (5.26) corresponding to the travelling wave
similarity solution of equations (5.22)—(5.24) for the parameter valves 1, v = 0.7 and

A = 1. The solution depends ah x ands and corresponds to a supersonic travelling wave
with velocity V, = —1.4286e, wherec is the sound speed.

B[A(w+v), 0], C[A(w+v), A(w—v)] and D[0, A(w — v)]. In the supersonic case? > v?,

A and C are centres, an® and D are saddles. The solution trajectories in figure 9 are
quite distinct from the travelling wave phase portraits for the easel, v =0andi =1
displayed in figure 1 (in figure ¥, = 0). In figure 9 the critical contours passing through
the saddless and D are of different height, and there is no trajectory joining the saddles
as in figure 1. Smooth, periodic travelling waves in figure 9 with zero means fond

v averaged over one period & are represented by the closed contours that encircle the
centre critical point atA. In the subsonic case displayed in figure 10 for whigh< v?,

A and C are saddles an® and D are centres. In this latter case there are no smooth
travelling wave solutions with zero means ferand v, since the critical pointA(0, O) is

a saddle and there are no trajectories that can encircle the oti@0). For the sonic
casew = +v, the critical points coalesce into two pairs of critical points to form critical
points that are a hybrid between a centre and a saddle. Thus, s the amplitude of

the smooth travelling wave solutions tends to zero.

6. Hamiltonian equations in Fourier space

In this section we consider the form of the resonant-wave interaction equations (3.1) and
(3.2) for the case of solutions that are independent of the long space varjaid for the
casem = 1 andn = —1. In this case the equations for the sound waves can be expressed
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Figure 10. Same as in figure 9 except for the case of a subsonic solutionaw4th0.7, v =1
andx = 1. The wave velocity, = —0.7ce,, wherec is the sound speed.

in the Hamiltonian form:

SH SH
u; = D@ (81,{) Uy = D@ <(Sv> (61)

where the Hamiltonian functionadl from equation (3.13) may be split into quadratidy)
and cubic(H,) terms:

H = Hy+ Hy
2

_ vRT(Dy ') — uk (Dy !
to= | do 5[vK'(Dy "u) — uK (Dg v)] (6.2)

2
H, = —/ d9%(u3+v3)
0

and the integral operator§ and K' are defined in equations (3.3) and (3.4). The term
Hy in equations (6.2) represents linear dispersive wave effects associated with three-wave
resonant interactions, anfd; consists of the Burgers’ self-wave interaction terms.

Since the solutions far andv of equations (3.1) and (3.2) (or equations (6.1) and (6.2))
are assumed to ber2periodic in6 with zero means, it is natural to investigate the Fourier
space decomposition of the solutions with respea iy using the Fourier expansions:

o0 oo

w(®.6)= Y u,(t)explipo) vO.0) = Y v)expips)  (6.3)

p=—00 p=—00

where the Fourier coefficien{s,(r)} and{v,(s)} are given by the formulae:

1 2 . 1 21 .
u,(t) = 2—/ u(0,r) exp(—ip6) do vp(t) = —/ v(@,t)exp(—ipo)dd  (6.4)
T Jo 2m 0
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and the variablep takes on only integer values. Note thaf = 0 andvg = 0 in
equations (6.3) since and v have zero means. In Fourier space, equations (3.1) and
(3.2) reduce to

Qu >

is
at = —5 Z upu_yfp - K‘YUS
p=—00
S i » (6.5)
= —— vpv.g_p —SMS
ot 2 =,
where
1 2
K, = 7/ K (0) exp(—ist) do (6.6)
7 Jo

denotes theth Fourier coefficient ofK (6). Note that for the periodic saw-tooth entropy
profile caseK; is given by

K=K ;=—a. (67)

Although the Dirac delta distribution (2.20) fdf (9) is not a square integrable equation,
(6.6) still yields the correct formula (6.7) fdt;. Sinceu(6,t), v(6,t) andK (9) are real it
is necessary that the Fourier coefficients satisfy the equations:

Uy =u_g v = K'=K_ (6.8)

)
where the superscript denotes the complex conjugate.

The main aim of the present development is first to determine the form of Hamilton’s
equations in Fourier space (section 6.1). The equations are then transformed to normal form
(see for example [20, 21]), in order to isolate the normal modes of the system (section 6.2).
Further canonical transformations can then be carried out to further investigate the equations.

6.1. Hamilton's equations in Fourier space

Using the Fourier representations (6.3) foandv (and a similar representation f&f(9)),
the Hamiltonian functional$l, and H; may be expressed as

Ho = im i/ Kyvpu_, — K_,v_,u, 6.9)
p=—00 p
T oo/ oo/

H, = -3 Z Z (st pUh —s—p + VsVpV_g_p) (6.10)

§=—00 p=—00
where the Fourier coefficient$u,, vy, K} satisfy the reality constraints (6.8). The
superscript on the sums in equations (6.9) and (6.10) denote sum over all integers excluding
p=0ands =0.
Noting thatH = Hy + Ha, straightforward computation &fH /éu’ and§H/5v} yields
Hamilton’s equations in Fourier space as

du is SH s =

= =—— o p — K vy 6.11
dt 27 Su* 2 Hpths—=p sUs ( )
s p=—00
vy is 6H is =
= = o K_u,. 6.12
ot 2w sv} 2 =, Upts—p F ! ( )

Equations (6.11) and (6.12) imply thai,, «¥} and {v,, v}} are canonically conjugate
variables.
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6.2. Reduction to normal form

Consider the linearized form of Hamilton’s equations (6.11) and (6.12):

ouy is 8§Hg
= 45 = _sts
ot 2 Su 6.13
v, is 8Hy . (6.13)
= = Ku,.

ar 2w sur O °
Note that the linearized equations (6.13) have solutionsufoand v, that satisfy the
equations:

3%u; ) 32vy )
For normal coordinatega;} we requireda,/dt = i|K|la, and that{a,} are canonical

coordinates. Thus, normal coordinates allow the identification of the different linear wave
modes in the system.

Following the approach of Zakharov and Kuznetsov [20] and Zakhatal [21], we
consider transformations of the form:

(Z) N <§ %_) (aaf) (6.15)

where{a,} and {a}} are normal variables. Note that transformations (6.15) automatically
ensure thakt} = u_; andv} = v_; as required by the reality constraints (6.8) foandv.

It turns out that one can choose the coefficiefatg and {8;} in equations (6.15) so that
the {a,} satisfy Hamilton’s equations:

day
ot

for the normal variables, where sgih denotes the sign of.
The inverse of transformations (6.15) are given by:

ag = (,Bjsus - aisvs)/Js

a:y = (_,Bxux + asvx)/-lx

SH,
- isgn(s)gf —i|K,|a; (6.16)

s

(6.17)

where
Jx = asﬁjs - ﬁsais (618)

is the determinant of transformation (6.15). From equations (6.9) and (6.15) the Hamiltonian
Hy may be expressed as
Hy = 27i Z [KpBpe, — K B ap)apa, + K,Bpa—_papa—p, — K, B o jaya” 1/p. (6.19)
p=—x
Computingda, /9t using equations (6.17), (6.11) and (6.12) and computifig/da’ using
equation (6.19), we find that equations (6.16) are satisfied prowiglethd g, are chosen
so that
is] K

o =i L=iBF+IBLPI=5" o= B (620)
s |Ks|
Equations (6.20) have solutions
(o) (i )
oy =1 — H(s)+1— H(s)
4 |K| 6.21)

_ (512 K:
h= <4n> (H(s) T H(S)])
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where H (s) is the Heaviside step function.
From equations (6.15) and (6.21) the original coordinétgsand{v,} can be expressed
in terms of the normal coordinates, by the equations:

(IR K,
us_.(%) [(lmas a£>H(s)+< e S)[l H(s)]}

g (6.22)
SV (0 & e Y+ (K o an, )1 - Hs)
vy =\ — - s a, +a* — K .
‘ 4r IK | ' |Ks|
The inverse transformations are readily determined from (6.16).
In terms of the normal coordinatés,}, the HamiltonianH, has the form:
oo
Ho= ) sgrs)|Kslasa (6.23)
§=—00
where w; = |K,| are the characteristic frequencies for the}. Similarly, the cubic

Hamiltonian functionalH; in equation (6.10) may be written in terms of the normal
coordinates as

3 Z Z Z [(USPkasal’ak+Ux*pka;ka;a;:)5k+s+p,0

00 p=—00 s=—00
+3(Vyprasapa; + V;; ; pak)Sk —s—p,0] (6.24)
where
Uspr = a0 + BBy Br
Vipk = asapay + B BBy

ands, , is the Kronecker delta symbol.
In terms of normal coordinates Hamilton’s equations (6.11) and (6.12) may be expressed
in the form:

(6.25)

s SH Ny
= ISgr(S)% = ||:|Ks|as -7 Sgr(s) E E (Uspkapak8k+s+]7.0
s

ot p=—00 k=—00
+Vkpvapak8k+p 5,0 +2V, ka akgk s—p, 0)] (626)

Thus{a,, a}} are canonically conjugate pairs.

7. Summary and concluding remarks

The main theme of this paper has been the Hamiltonian structure of the equations for
three-wave resonant interaction in adiabatic gas dynamics in one Cartesian space dimension
derived by Majda and Rosales [1]. The equations consist of two inviscid Burgers equations
for the backward and forward sound waves coupled via linear integral operators that describe
the resonant reflection of a sound wave off an entropy wave disturbance to produce the
reverse sound wave. The detailed form of the equations (equations (2.11) and (2.12))
depend on the resonance conditions (2.7) that relate the frequencies and wavenumbers of
the entropy wave to those of the sound waves, as well as the dispersion equations for the
waves involved.

In section 3, Lagrangian and Hamiltonian formulations of the equations were established
for the lowest-order interaction case & 1 andrn = —1) in which the wavelengths of the
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backward and forward sound wavés and ¢; are twice that of the entropy wave,)
(Majda and Rosales [1] in fact restricted their attention solely to this case). The Lagrangian
variational principle (equations (3.10) and (3.11)) was established by introducing velocity
potentialsU andV for the forward and backward sound wave velocity perturbatioaad

v and then expressing the equations in potential form. The other important point to note
is the skew adjoint character of the matrix integral operator describing three-wave resonant
interactions. An example of the Hamiltonian structure of the equations for a higher-order
case in which the wavelengths of the backward sound wéeahd forward sound wave

(¢3) are related to the entropy wave of lengthby the equationg; = 4¢, and¢3 = 2¢,

was then considered.

In section 4, a study of the similarity solutions and conservation laws of the equations
was carried out for the case of a periodic saw-tooth entropy wave profile in the fast phase
variablef. The analysis was restricted to cases where the backward and forward sound
wave velocity perturbations andv were independent of the large space variabld-our
conservation laws were established by exploiting the Lie point symmetries admitted by
the potential form of the equations and by an application of Noether's theorem. Classical
similarity solutions of the equations were derived using the Lie point symmetries. The
Hamiltonians and canonical variables for two classes of similarity solutions obtained by
Majda et al [9] corresponding to the travelling wave solutions and a periadigvave
solutions with shocks were discussed.

Numerical examples of the similarity solutions of section 4, and more general solutions
dependent on the large space variablevere used in section 5 to illustrate the interplay
between nonlinear wave steepening and the dispersive three-wave resonant interactions. The
travelling wave solutions considered by Maijelizal [9] correspond to closed periodic orbits
in the («, v) phase plane obtained by plotting the contours of the Hamiltonian integral.
These solutions can be considered as a special limit of more general similarity solutions.
The more general solutions exhibit spiralling orbits about the origin in the appropyiate
phase plane, and a more complex singularity structure involving critical points consisting of
centres, saddles, nodes and spiral points. A generalization of the travelling wave solution
of Majda et al [9] which depends on the large space variableas studied. On the long
space and timescales these solutions correspond to supersonic periodic travelling waves.
The velocity amplitudes of the sound waves decrease monotonically to zero as the wave
speedV, approaches the sound speedAs V,, — *ce, the two pairs of saddles and centre
critical points coalesce to form two cusp-like critical points which are hybrids between a
centre and a saddle. In the subsonic regije< ¢, no smooth, periodic travelling wave
solutions with constant wave speed exist.

Hamiltonian equations in Fouridip, r) space were derived in section 6, wherds
the Fourier-space variable corresponding to the fast phase va@iatehe waves. The
Hamiltonian in Fourier space was transformed to normal form (e.g. [20,21]) in order to
isolate the normal modes of the system. The characteristic frequencies in Fourier space
arew, = |K,|, whereK, is the pth Fourier coefficient corresponding to the entropy wave
kernel K (6) occurring in the three-wave resonant interaction integrals.

Further aspects of three-wave resonant interactions of interest that deserve further
attention consist of a more direct derivation of the Majda Rosales [1] equations using
the Hamiltonian formulation of adiabatic, non-isentropic gas dynamics (e.g. [20]), and
further analysis of the Hamiltonian Fourier space equations. Also of interest are related
equations derived by Huntet al [8] describing three-wave resonant interactions in adiabatic
gas dynamics in two or more spatial dimensions, in which case the sound waves can be
resonantly reflected by both the entropy wave and vorticity eigenmodes.
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Appendix

In this appendix we describe the periodic orbits of the Hamiltonian (5.1). From
equation (5.1) the Hamiltonian contours are equivalent to the cubic equations:

A ~ ~ us A
3 2
—3-v—3Hy=0 Hy=Hy— — + -u”. Al
v 2v 0 0 0 3 2” ( )

For the periodic orbits within EFBDE in figure 1, equations (Al) have three real roots for
u andv given by the equations:

_scos(2) 4 * vp = acos( O HF) 4 —cos(2 AT L2
= 3) 72 2= 3 2 v = 2
¢ A ¢+ 2 A ¢+ 4 A
= ACOS| — — = A COS — = A COS —
“ (3)+2 42 ( 3 )tz s 3 ) T2
(A2)
where
H, H,
cos@:l+cos€o—cos¢sl+127§ COS@OZlJFlZ)TS' (A3)

Note thatv; > v3 > vp andu; > u3 > up. The periodic orbits inside EFBDE are described
by us, us, v, andvz, where 0< ¢ < 6p < w and 0< 6 < 6p. The periodT of the periodic
orbits within EFBDE are given by

where

-2 e [l o) ()

(A5)
is the action (e.g. [17]). Equations (A4) and (A5) yield
;[ [cos39) + cosg ¢)][COS(19)+008(29)]
T /0 sing

for the period of the orbits within EFBDE. For the critical contqiify = —13/6) T = T.
and for the limiting orbit aboutd (0, 0) as Hy — 0 (T — Tp) we have

A 3 A
Tc=<3+ 2”) To= 212, (A7)
o

(A6)

2
Note thatT, < T < Ty for the periodic orbits inside EFBDE.
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