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Abstract. Equations describing three-wave resonant interactions in adiabatic gas dynamics
in one Cartesian space dimension derived by Majda and Rosales are expressed in terms of
Lagrangian and Hamiltonian variational principles. The equations consist of two coupled integro-
differential Burgers equations for the backward and forward sound waves that are coupled
by integral terms that describe the resonant reflection of a sound wave off an entropy wave
disturbance to produce a reverse sound wave. Similarity solutions and conservation laws for
the equations are derived using symmetry group methods for the special case where the entropy
disturbance consists of a periodic saw-tooth profile. The solutions are used to illustrate the
interplay between the nonlinearity represented by the Burgers self-wave interaction terms and
wave dispersion represented by the three-wave resonant interaction terms. Hamiltonian equations
in Fourier(p, t) space are also obtained wherep is the Fourier space variable corresponding to
the fast phase variableθ of the waves. The latter equations are transformed to normal form in
order to isolate the normal modes of the system.

1. Introduction

Majda and Rosales [1] considered weakly nonlinear asymptotic equations for resonantly
interacting hyperbolic waves in one Cartesian space dimension. For the case of
compressible, adiabatic gas dynamics, Majda and Rosales derived a pair of inviscid Burgers
equations (one for the forward sound wave and one for the backward sound wave) coupled
through a linear integral operator with a given kernel, dependent on the initial data for
the contact discontinuity or entropy wave eigenmode. For the forward sound wave Burgers
equation, the linear integral operator describes the resonant reflection of the backward sound
wave off the entropy wave to generate a forward sound wave. Similarly, the linear integral
operator in the backward sound wave Burgers equation describes the resonant reflection of
the forward sound wave off an entropy wave to produce a backward sound wave. Resonant
wave interactions in this theory are more liable to be significant for extended periodic or near
periodic wavetrains than for isolated pulses, since the resonant interactions are strengthened
the longer the period of time over which the waves interact.

Almgren [2] and Jolyet al [3] considered in more detail the conditions for three-wave
resonant interactions, including the case of wave propagation in non-homogeneous or non-
uniform media. For the case of a non-uniform background state, high frequency waves
initially in resonance typically move out of resonance since thek-vector of the waves and
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the frequencyω evolve according to the ray equations (see also [4] for the case of resonant
interactions of internal gravity waves in a stratified shear flow). Jolyet al [3] carried out
a detailed study on resonances, and related the resonance conditions to the geometry of
planar webs. Cehelsky and Rosales [5] presented an alternative version of the theory for
the case where derivatives are not necessarily bounded and shocks may be present. The
latter authors used an equation expansion method similar to the Chapman Enskog method
for the Boltzmann equation, rather than a multiple scales method, and incorporated a small
modification of the wave phases owing to the presence of multiple waves.

Webbet al [6] derived equations describing wave–wave interactions in two-fluid cosmic
ray hydrodynamics in a non-uniform background flow. In the gas dynamical limit, and for
the case of periodic waves propagating through a uniform background medium the latter
equations reduce to the Majda Rosales equations for three-wave resonant interactions in
adiabatic gas dynamics. Further developments of the theory are described in [7]. The
extension of the theory to resonant interactions in gas dynamics in several space dimensions
has been developed by Hunteret al [8].

The main aim of this paper is to develop a Hamiltonian formulation of the Majda
and Rosales [1] equations describing the three-wave resonant interactions of periodic
sound waves and entropy waves in adiabatic gas dynamics propagating through a uniform
background medium. In section 2 the model equations obtained by Majda and Rosales
[1], and the conditions for three-wave resonant interactions are described. In section 3
Lagrangian and Hamiltonian aspects of the equations are discussed. In particular, we obtain
the Hamiltonian form of the equations for some of the lower-order harmonic interaction
cases, namely the first and second harmonic interactions, and the first, second and fourth
harmonic interactions. In section 4, the Lie symmetries and the conservation laws admitted
by a restricted version of the equations applicable for the case of a periodic saw-tooth entropy
wave profile are discussed. The symmetries are also used to obtain similarity solutions of
the equations. Section 5 considers numerical examples of the similarity solutions, including
a discussion on the similarity solutions obtained by Majdaet al [9]. Section 6 considers the
Hamiltonian form of the Majda Rosales equations in(p, t) Fourier space, wherep is the
Fourier space variable corresponding to the fast phase variableθ of the waves. The latter
equations are reduced to normal form in order to isolate the normal modes of the system.
Section 7 concludes with a summary and discussion.

2. The model equations

Majda and Rosales [1] considered the resonant interaction of periodic, weakly nonlinear
sound waves and the entropy wave in adiabatic gas dynamics in one Cartesian space
dimension. The Majda and Rosales equations were derived using weakly nonlinear
geometrical optics expansions of the governing equations for high frequency waves.

The basic gas dynamical equations consist of the continuity equation, the momentum
equation, the gas entropy equation, plus the adiabatic equation of state relating the gas
pressurepg = pg(ρ, S) to the gas densityρ and entropyS. Majda and Rosales considered
the propagation of weakly nonlinear short wavelength waves about a uniform background
stateρ = ρ0, u = 0, andS = S0 (u denotes the velocity of the gas along thex-axis), and
assumed a perturbation expansion of the form:

ψ = ψ(0) + εψ(1) + ε2ψ(2) + · · · (2.1)

whereψ = (ρ, u, S) denotes the state vector of the gas, andε is the perturbation parameter
representing the wave amplitude. At lowest order in the perturbation expansion one obtains
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the standard eigenvector solutions{Rj : j = 1, 2, 3} and eigenvalues{λj : j = 1, 2, 3}
of adiabatic gas dynamics, whereλ1 = −ag, λ2 = 0 andλ3 = ag are the eigenvalues
corresponding to the backward sound wave, the entropy wave and the forward sound wave
respectively (hereag = (γgpg/ρ)

1
2 denotes the gas sound speed, andγg is the adiabatic

index of the gas).
From the second-order perturbation equations one obtains compatibility conditions on

the first-order perturbations by requiring the perturbation expansion is uniform for times
t < O(1/ε) (i.e. it is required thatε2ψ(2) < εψ(1) for times t < O(1/ε)). This leads to the
Majda Rosales equations:

ut + ux + uuθ3 −
n

m

1

2π

∫ 2π

0
K(mθ3+ nθ1, x)v(θ1; x, t)dθ1 = 0 (2.2)

vt − vx + vvθ1 +
m

n

1

2π

∫ 2π

0
K(mθ3+ nθ1, x)u(θ3; x, t)dθ3 = 0 (2.3)

governing the backward(v) and forward (u) sound wave velocity perturbations.
Equations (2.2) and (2.3) correspond to the case of resonant periodic waves in which

θj = kjx − ωj t
ε

j = 1, 2, 3 (2.4)

correspond to the fast phase variable of thej th wave mode andωj and kj denote the
frequencies and wavenumbers of the waves. Equations (2.2) and (2.3) apply to the case of
resonant periodic waves andm andn are integers characterizing the resonant interactions.
It is assumed in the derivation of equations (2.2) and (2.3) thatu andv have period 2π and
have zero means in theθj . The constraint thatu andv have zero means can be lifted, but
leads to more complicated equations (see, e.g. Webbet al [6]). The period assumed foru
andv can be chosen to be any positive constantT , in which case 2π is replaced byT in
equations (2.2) and (2.3).

In equations (2.2) and (2.3)

u = γg + 1

2
k3v3 v = γg + 1

2
k1v1 (2.5)

correspond to the velocity perturbationsv3 andv1 associated with the forward and backward
sound waves. The kernel

K(θ2, x) = k2

4

∂a2(θ2, x)

∂θ2
(2.6)

represents the derivative of the density perturbationa2(θ2, x) associated with the entropy
wave. The velocity perturbations and gas density perturbations in the above equations are
normalized to the gas sound speedag = (γgpg0/ρ0)

1
2 and densityρ0 characteristic of the

background state.
The integral terms in equations (2.2) and (2.3) represent the resonant interaction of

a sound wave with the entropy wave to produce a reverse sound wave, whereas the
uuθ3 and vvθ1 terms are the Burgers self-wave interaction terms. Note that there is no
separate equation for the entropy wave, since the entropy wave fluctuations are frozen
into the background flow. Sinceu0 = 0, K(θ2, x) is completely determined by the initial
conditions. The fact that there is no generation of entropy wave disturbances by the three
wave interactions is a consequence of the fact that the entropy is a Riemann invariant of
the gas dynamical equations (Majda and Rosales, [1]).
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2.1. Resonance conditions

For resonant 2π -periodic waves in theθj , the frequenciesωj and wavenumberskj satisfy
the resonance conditions:

k2 = nk1+mk3 ω2 = nω1+mω3 (2.7)

wherem andn are integers (see, e.g. Anileet al [7]). Since the velocity perturbations are
normalized to the gas sound speed, the dispersion equations for the waves are:

ω1 = −k1 ω2 = 0 ω3 = k3 (2.8)

corresponding to the backward sound wave, the entropy wave and the forward sound wave
respectively. Equations (2.7) and (2.8) imply that

k2

2k1
= n k2

2k3
= m (2.9)

for resonant-wave interactions. In terms of the wavelength of the waves{ j̀ }, equations (2.9)
imply

`1 = 2`2|n| `3 = 2`2|m| (2.10)

so that the wavelengths of the sound waves are integral multiples of the wavelength of the
entropy wave for resonant waves.

2.2. The analogue of the Manley–Rowe relations

First note that equations (2.2) and (2.3) may be written in the form:

ut + ux + uuθ − n

m

1

2π

∫ 2π

0
K(mθ + nξ, x)v(ξ ; x, t)dξ = 0 (2.11)

vt − vx + vvθ + m
n

1

2π

∫ 2π

0
K(mξ + nθ, x)u(ξ ; x, t)dξ = 0 (2.12)

where the variableθ in equation (2.11) refers to the phase of the forward sound wave,
whereas in equation (2.12)θ refers to the phase of the backward sound wave. It is of
interest to note that equations (2.11) and (2.12) may be written in the conservative form:

ut + ux + ∂

∂θ

(
u2

2
− n

m2

1

2π

∫ 2π

0
R(mθ + nξ, x)v(ξ ; x, t)dξ

)
= 0 (2.13)

vt − vx + ∂

∂θ

(
v2

2
+ m

n2

1

2π

∫ 2π

0
R(mξ + nθ, x)u(ξ ; x, t)dξ

)
= 0 (2.14)

where the equations:

R(θ2, x) = k2

4
a2(θ2, x) K(θ2, x) = ∂R(θ2, x)

∂θ2
(2.15)

relate the kernelR(θ2, x) to the entropy wave density perturbationa2(θ2, x) and to the
kernelK(θ2, x).

Multiplying equation (2.11) bym2u and adding equation (2.12) multiplied byn2v and
integrating with respect toθ from θ = 0 to θ = 2π yields the equation:

∂

∂t

(∫ 2π

0

m2u2

2
+ n

2v2

2
dθ

)
+ ∂

∂x

(∫ 2π

0

m2u2

2
− n

2v2

2
dθ

)
+
∑
s

[
m2u3

3
+ n

2v3

3

]θs−
θs+
= 0

(2.16)

where the sum overs corresponds to shocks at the pointsθ = θs that possibly occur in the
θ range: 0< θ < 2π . Equation (2.16) is the analogue of the Manley–Rowe relations for
three-wave resonant interactions of dispersive waves (see, e.g. Anileet al [7]).
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2.3. Special forms of the equations

Below we discuss special forms of the equations which we consider in more detail in the
following sections. In particular we discuss the form of the equations for the case of a
periodic saw-tooth entropy wave profile inθ2 which allows the evaluation of the integrals
in the three-wave resonant interaction terms in equations (2.11) and (2.12).

2.3.1. Case (a):m = 1 andn = −1. Equations (2.11) and (2.12) in this case reduce to:

ut + ux + uuθ + 1

2π

∫ 2π

0
K(θ − ξ, x)v(ξ ; x, t)dξ = 0 (2.17)

vt − vx + vvθ − 1

2π

∫ 2π

0
K(ξ − θ, x)u(ξ ; x, t)dξ = 0. (2.18)

Pego [10], Majdaet al [9] and Hunter [11] considered analytical and numerical solutions
of equations (2.17) and (2.18) that were independent of the long space variablex. For the
model equations (2.17) and (2.18) the wavelengths of the sound waves are twice that of the
entropy wave (see equations (2.10)). Pego [10] derived periodic, smooth analytic solutions
of equations (2.17) and (2.18) for the case of a periodic kernelK(θ) = sinθ (see also the
discussion by Anileet al [7]) in which the resonant interactions counteract the tendency of
the solutions to form shocks due to the nonlinear Burgers terms.

For the case of a periodic saw-tooth entropy profile:

R(θ) = α(θ − π) for 0< θ < 2π (2.19)

(α is a constant) periodically extended with a period of 2π in θ , the kernelK(θ) has the
form:

K(θ) = α
{

1− 2π
∞∑

n=−∞
δ[θ − 2nπ ]

}
. (2.20)

Substituting kernel (2.20) into equations (2.17) and (2.18) yields the coupled Burgers
equations:

ut + ux + uuθ − αv(θ; x, t) = 0 (2.21)

vt − vx + vvθ + αu(θ; x, t) = 0 (2.22)

governing the resonant interaction of the sound waves. The relevant solutions of
equations (2.21) and (2.22) must have zero means, and be periodic inθ .

2.3.2. Case (b):m = 1 andn = 1. In this case the resonant interaction equations (2.11)
and (2.12) reduce to:

ut + ux + uuθ − 1

2π

∫ 2π

0
K(θ + ξ, x)v(ξ ; x, t)dξ = 0 (2.23)

vt − vx + vvθ + 1

2π

∫ 2π

0
K(θ + ξ, x)u(ξ ; x, t)dξ = 0. (2.24)

For the saw-tooth entropy wave profile (2.19), these equations reduce to:

ut + ux + uuθ + αv(−θ; x, t) = 0 (2.25)

vt − vx + vvθ − αu(−θ; x, t) = 0. (2.26)

The interesting point to note in this case is that the coupled Burgers equations (2.25) and
(2.26) are now non-local equations, whereas the Burgers equations (2.21) and (2.22) for the
case (a) m = 1 andn = −1 are local equations.
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2.3.3. Case (c)m = 1 andn = −2. For the saw-tooth entropy wave profile the kernel
K(θ) is given by equation (2.20), and the Burgers equations (2.11) and (2.12) reduce to:

ut + ux + uuθ − α[v( 1
2θ; x, t)+ v( 1

2θ + π; x, t)] = 0 (2.27)

vt − vx + vvθ + 1
2αu(2θ; x, t) = 0. (2.28)

Again, we obtain non-local coupled Burgers equations foru and v. In this case, the
resonance conditions (2.9) yield

k1 = −k2

4
k3 = k2

2
(2.29)

so that the backward sound wave has a wavelength of`1 = 4`2, and the forward sound
wave has a wavelength of`3 = 2`2 where`2 is the wavelength of the entropy wave.

3. Variational formulations

In this section we obtain Lagrangian and Hamiltonian variational principles for the Majda
and Rosales equations (2.11) and (2.12). We illustrate some of the complications that can
arise for differentm and n by considering the examples (i)m = 1 andn = −1 and (ii)
m = 1 andn = −2.

3.1. Casem = 1 andn = −1

The basic equations of interest are equations (2.17) and (2.18), namely

ut + ux + uuθ + K̂[v] = 0 (3.1)

vt − vx + vvθ − K̂†[u] = 0 (3.2)

where the integral operatorŝK andK̂† are defined by the equations:

K̂[v] = 1

2π

∫ 2π

0
K(θ − ξ, x)v(ξ ; x, t)dξ (3.3)

K̂†[u] = 1

2π

∫ 2π

0
K(ξ − θ, x)u(ξ ; x, t)dξ. (3.4)

In equations (3.1)–(3.4)̂K† is the adjoint of the operator̂K with respect to the standard
inner product

〈f, g〉 =
∫ 2π

0
f (ξ)g(ξ) dξ. (3.5)

To obtain a Lagrangian variational principle for these equations, first introduce potential
variablesU(θ; x, t) andV (θ; x, t) such that

u = Uθ v = Vθ . (3.6)

By noting that the operatorŝK andK̂† commute withDθ ≡ ∂/∂θ , i.e.

Dθ(K̂[V ]) = K̂[DθV ] Dθ(K̂
†[U ]) = K̂†[DθU ] (3.7)

one finds that equations (3.1) and (3.2) may be written in the potential form:

Dθ(Ut + Ux + 1
2U

2
θ + K̂[V ]) = 0 (3.8)

Dθ(Vt − Vx + 1
2V

2
θ − K̂†[U ]) = 0. (3.9)
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Equations (3.8) and (3.9) may be obtained from the variational principle of extremizing the
Lagrangian variational functional:

L =
∫ ∞
−∞

dt
∫ ∞
−∞

dx
∫ 2π

0
dθ L (3.10)

where

L = − 1
2(UθUt + VθVt )− 1

2(UxUθ − VxVθ )− 1
6(U

3
θ + V 3

θ )+ 1
2(K̂

†[U ]Vθ − K̂[V ]Uθ)

(3.11)

is the Lagrangian density.
Equations (3.1) and (3.2) may also be written in the Hamiltonian form:

ut = Dθ

(
δH

δu

)
vt = Dθ

(
δH

δv

)
(3.12)

where the Hamiltonian functional has the form:

H =
∫ ∞
−∞

dx
∫ 2π

0
dθ H

H = − 1
6(u

3+ v3)− 1
2(uD

−1
θ ux − vD−1

θ vx)− 1
2{uK̂[D−1

θ v] − vK̂†[D−1
θ u]}

(3.13)

andD−1
θ f ≡

∫ θ dθ f (θ). In equations (3.12)Dθ is the symplectic operator (e.g. [12]).
Alternatively, using the Poisson bracket for functionalsF andG:

{F,G} =
∫ 2π

0
dθ

δF

δuα
Dθ

(
δG

δuα

)
(3.14)

where(u1, u2) ≡ (u, v) equations (3.12) may be written in the form:

ut = {u,H } vt = {v,H }. (3.15)

For the case of a saw-tooth entropy wave profile (2.19), the Lagrangian densityL in
equation (3.11) takes the form:

Lα = − 1
2(UθUt + VθVt )− 1

2(UxUθ − VxVθ )− 1
6(U

3
θ + V 3

θ )− 1
2α(UVθ − VUθ) (3.16)

and a similar result applies for the Hamiltonian density in equations (3.13).

3.2. Casem = 1 andn = −2

In this section we show the kind of complications that arise for cases wherem 6= 1 and
n 6= −1. The examples of saw-tooth entropy profiles discussed in equations (2.25) and
(2.26) form = 1, n = 1 and in equations (2.27) and (2.28) for the casem = 1 andn = −2
lead to non-local coupled Burgers equations for the backward and forward sound waves.

Equations (2.11) and (2.12) for the casem = 1 andn = −2 reduce to:

ut + ux + uuθ + 1

π

∫ 2π

0
K(θ − 2ξ, x)v(ξ ; x, t)dξ = 0 (3.17)

vt − vx + vvθ − 1

4π

∫ 2π

0
K(ξ − 2θ, x)u(ξ ; x, t)dξ = 0. (3.18)

For the case of a saw-tooth entropy wave profile (2.19), equations (3.17) and (3.18) reduce
to equations (2.27) and (2.28), in whichu(θ; x, t), u(2θ; x, t), v(θ; x, t), v(1

2θ; x, t) and
v( 1

2θ + π; x, t) play a role. Equation (3.17) may be written in the form:

ut + ux + uuθ + 1

2π

∫ 2π

0
K(θ − η; x, t)[v( 1

2η; x, t)+ v( 1
2η + π; x, t)] dη = 0. (3.19)
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Hencev( 1
2η; x, t) andv( 1

2η + π; x, t) also play an important role in equations (3.17) and
(3.18).

Motivated by the above observations we introduce new variables:

z1(θ; x, t) = 2
1
2v( 1

2θ; x, t) z2(θ; x, t) = 2
1
2v( 1

2θ + π; x, t) (3.20)

where 06 θ 6 2π . Note thatv(θ; x, t) can be reconstructed fromz1(θ; x, t) andz2(θ; x, t).
The functionsu, z1 andz2 satisfy the coupled equations:

ut + ux + uuθ + 2−
1
2 K̂[z1+ z2] = 0

z1t − z1x + 2
1
2 z1z1θ − 2−

1
2 K̂†[u] = 0

z2t − z2x + 2
1
2 z2z2θ − 2−

1
2 K̂†[u] = 0.

(3.21)

Note thatz1 andz2 satisfy the same partial differential equation. One possible solution of
these equations isz1 = z2, although this will not generally be the case, unlessv(θ; x, t) has a
period ofπ in θ . If v(θ; x, t) does not have a shock atθ = π , thenz1(2π; x, t) = z2(0; x, t),
and higher-order derivatives ofv would match atθ = π . Using the notation:

ψ = (u, z1, z2)
T ψ2 = (u2, z2

1, z
2
2)
T (3.22)

(the superscriptT denotes the transpose), equations (3.21) may be written in the matrix
form:

∂ψ

∂t
+ A·∂ψ

∂x
+ 1

2
Dθ(B·ψ2)+ K̃·ψ = 0 (3.23)

where the matricesA andB are given by

A =
( 1 0 0

0 −1 0
0 0 −1

)

B =
( 1 0 0

0 2
1
2 0

0 0 2
1
2

) (3.24)

and the matrix operator̃K has the form:

K̃ = 1

2
1
2

( 0 K̂ K̂

−K̂† 0 0
−K̂† 0 0

)
. (3.25)

The operatorsK̂ andK̂† are defined in equations (3.3) and (3.4) whereK̂† is the adjoint of
K̂. The matrix operator in equation (3.25) is skew adjoint (i.e.K̃† = −K̃T ).

Introducing the potential variables:

9 = (U,Z1, Z2)
T ψ = 9θ ≡ (u, z1, z2)

T (3.26)

equations (3.23) may be written in the potential form:

Dθ(9t + A·9x + 1
2B·92

θ + K̃·9) = 0. (3.27)

In the derivation of equation (3.27) we use the fact that the operatorsK̂ andK̂† commute
with Dθ (see equations (3.7)). The notation:

92
θ ≡ (U2

θ , Z
2
1θ , Z

2
2θ )

T (3.28)

is used in equation (3.27).
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Equations (3.27) may be obtained by extremizing the variational functional

L =
∫ ∞
−∞

dt
∫ ∞
−∞

dx
∫ 2π

0
dθ L (3.29)

where

L = − 1
29

T
θ ·9t − 1

29
T
θ ·A·9x − 1

29
T
θ ·K̃·9 − 1

6(9
2
θ )
T ·B·9θ. (3.30)

Alternatively in component form:

L = − 1
2(UθUt + Z1θZ1t + Z2θZ2t )− 1

2(UθUx − Z1θZ1x − Z2θZ2x)

−2−
3
2 {UθK̂[Z1+ Z2] − (Z1θ + Z2θ )K̂

†[U ]} − 1
6[U3

θ + 2
1
2 (Z3

1θ + Z3
2θ )].

(3.31)

The variational principle (3.29) yields equations (3.21). Note, however that further
constraints may need to be applied to the variational functional (3.29) ifv(θ; x, t) is to
be smooth atθ = π .

Equations (3.23) can also be written in the Hamiltonian form:

ψt = Dθ

(
δH

δψ

)
(3.32)

where the Hamiltonian functional is given by:

H =
∫ ∞
−∞

dx
∫ 2π

0
dθ [− 1

29
T
θ ·A·9x − 1

29
T
θ ·K̃·9 − 1

6(9
2
θ )
T ·B·9θ ]. (3.33)

The above development for the casem = 1, andn = −2 shows that form 6= 1, n 6= −1,
it is necessary in general to introduce new variables to reduce the equations to Hamiltonian
form. Clearly the above analysis can be generalized for more generalm andn.

4. Symmetries and conservation laws

In this section we discuss the symmetries and conservation laws for the coupled Burgers
equations (2.21) and (2.22) governing the resonant interaction of the backward and forward
sound waves for the case of a saw-tooth entropy wave profile described by equations (2.19)
and (2.20). The symmetries are also used to derive similarity solutions of the equations.
We restrict our attention to solutions which are independent of the long space variablex.
Thus, the equations of interest are:

ut + uuθ − αv(θ, t) = 0 (4.1)

vt + vvθ + αu(θ, t) = 0 (4.2)

whereα is a constant.
Equations (4.1) and (4.2) may be obtained from the variational principle (see

equations (3.10)–(3.16)) of extremizing the functional:

L =
∫ ∞
−∞

dt
∫ 2π

0
dθ Lα

Lα = − 1
2(UθUt + VθVt )− 1

6(U
3
θ + V 3

θ )− 1
2α(UVθ − VUθ)

(4.3)

whereu = Uθ and v = Vθ . The potential form of equations (4.1) and (4.2) are also of
interest are, namely:

Ut + 1
2U

2
θ − αV = 0 (4.4)

Vt + 1
2V

2
θ + αU = 0. (4.5)
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The Lie point symmetries admitted by equations (4.1) and (4.2), and equations (4.4)
and (4.5) are discussed in section 4.1. In section 4.2 conservation laws for the equations
are obtained by using the variational formulation (4.3) of the equations in conjunction with
Noether’s theorem. Section 4.3 considers similarity solutions of the equations and their
relation to analytic solutions obtained by Majdaet al [9].

4.1. Lie point symmetries

Equations (4.1) and (4.2) admit infinitesimal Lie point symmetries of the form:

t ′ = t + εξ t θ ′ = θ + εξθ u′ = u+ εηu v′ = v + εηv (4.6)

where the infinitesimal generators(ξ t , ξ θ , ηu, ηv) are given by:

ξ t = a1 ξθ = a2+ a3θ ηu = a3u ηv = a3v (4.7)

and a1, a2 and a3 are constants. The corresponding point Lie algebra has the general
isovector

X = ξ t ∂
∂t
+ ξ θ ∂

∂θ
+ ηu ∂

∂u
+ ηv ∂

∂v
≡ a1X1+ a2X2+ a3X3 (4.8)

where

X1 = ∂

∂t

X2 = ∂

∂θ

X3 = θ ∂
∂θ
+ u ∂

∂u
+ v ∂

∂v

(4.9)

are the basis elements of the Lie algebra. The operatorsX1, X2 and X3 correspond
respectively to the time translation symmetry,θ -translation symmetry and a ‘stretch’
symmetry of equations (4.1) and (4.2).

Using results (4.7)–(4.9) one can show that the potential equations (4.4) and (4.5) admit
the Lie symmetry operators:

Y1 = ∂

∂t

Y2 = ∂

∂θ

Y3 = θ ∂
∂θ
+ 2U

∂

∂U
+ 2V

∂

∂V

Y4 ≡ Yδ = sin(αt + δ) ∂
∂U
+ cos(αt + δ) ∂

∂V
.

(4.10)

The symmetry operatorsY1, Y2 and Y3 in equations (4.10) correspond to the symmetry
operators{X1, X2, X3} of equations (4.9) associated with equations (4.1) and (4.2). The
operatorY4 in equations (4.10) corresponds to the fact that the potential equations (4.4) and
(4.5) remain invariant under the transformations:

U ′ = U + ε sin(αt + δ) V ′ = V + ε cos(αt + δ) (4.11)

which are gauge symmetries.
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4.2. Conservation laws

Using the symmetries (4.10) of the potential equations (4.4) and (4.5), the variational
principle (4.3) and applying Noether’s theorem (e.g. Bluman and Kumei [13], Olver [14])
leads to four conservation laws associated with equations (4.1) and (4.2) and (4.4) and (4.5)
of the form:

DtEj +DθFj = 0 j = 1(1)4 (4.12)

whereDt ≡ ∂/∂t andDθ ≡ ∂/∂θ . The conserved densities{Ej } and fluxes{Fj } associated
with each of the symmetries are listed below:

E1 = − 1
6(u

3+ v3)− 1
2α(Uv − V u)

F1 = − 1
8(u

4+ v4)+ 1
4α(V u

2− Uv2)
(4.13)

E2 = 1
2(u

2+ v2)

F2 = 1
3(u

3+ v3)
(4.14)

E3 = 1
2(θu

2+ θv2)− (Uu+ V v)+ 1
2D
−1
θ (u

2+ v2)

F3 = 1
3θ(u

3+ v3)− 1
2(Uu

2+ V v2)
(4.15)

E4 = u sin(αt + δ)+ v cos(αt + δ)
F4 = 1

2[u2 sin(αt + δ)+ v2 cos(αt + δ)]. (4.16)

The conserved densityE1 associated with time translation invariance in equations (4.13)
corresponds to the Hamiltonian density, i.e. equations (4.1) and (4.2) may be written in the
Hamiltonian form (3.12) where

H =
∫ 2π

0
dθ E1 ≡

∫ 2π

0
dθ [− 1

6(u
3+ v3)− 1

2α(Uv − V u)] (4.17)

is the Hamiltonian functional.
The conservation law associated withθ -translation invariance (equations (4.14))

corresponds to the Manley–Rowe relations (2.16) discussed in section 2. The conservation
law associated with the stretch symmetryY3 (equations (4.10) and (4.15)) is the least obvious
law. The conservation law (4.16) associated withY4 might have been expected from the fact
that the linearized version of equations (4.1) and (4.2) admit the trigonometric solutions:

u = sin(αt + δ) v = cos(αt + δ). (4.18)

4.3. Similarity solutions

Classical similarity solutions of equations (4.1) and (4.2) may be obtained by first integrating
the group trajectories:

dt

ξ t
= dθ

ξθ
= du

ηu
= dv

ηv
(4.19)

to obtain the group invariants (see, e.g. [13]). In the present case the infinitesimal generators
of the point Lie group are given by equations (4.7), so that equations (4.19) reduce to:

dt

a1
= dθ

a2+ a3θ
= du

a3u
= dv

a3v
. (4.20)

Integrating the group trajectories (4.20), assuminga1 6= 0 and a3 6= 0 yields the group
invariants:

J1 = ln |θ − θ0| − µt J2 = u

θ − θ0
J3 = v

θ − θ0
(4.21)
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where

µ = a3

a1
θ0 = −a2

a3
. (4.22)

From equations (4.21) and (4.22), it follows that equations (4.1) and (4.2) possess similarity
solutions of the form:

u = (θ − θ0)f (η) v = (θ − θ0)g(η) (4.23)

where

η = ln |θ − θ0| − µt (4.24)

is the similarity variable. Substituting the solution ansatz (4.23) and (4.24) into
equations (4.1) and (4.2) yields the ordinary differential equations:

(f − µ)f ′(η) = −(f 2− αg) (g − µ)g′(η) = −(g2+ αf ). (4.25)

Since equations (4.25) do not depend explicitly onη, the equations may be combined to
yield a single ordinary differential equation

df

dg
= (f 2− αg)(g − µ)
(g2+ αf )(f − µ) (4.26)

in the (f, g) phase plane. It is of interest to note that equation (4.26) is an example of
Darboux’s equation (e.g. Ince [15, p 29]; Goursat [16, p 29]), i.e. equation (4.26) may be
written in the form:

df

dg
= Nf −M
Ng − L (4.27)

where

M = µf 2+ αg2− µαg
N = fg
L = µg2− αf 2+ µαf.

(4.28)

The general theory of Darboux’s equation is described in [15, 16], where further reference
to the original work of Darboux may be found.

The general character of the solutions for equations (4.25) and (4.26) may be deduced
from an analysis of the critical points of equation (4.26) in the(f, g) phase plane. This is
carried out in section 5. For generalα andµ, we have not been able to obtain an analytic
integral of equation (4.26). However, in the special cases (a) a3→ 0 (|θ0| → ∞, µ→ 0)
and (b) a1 → 0 (µ → ∞) Majda et al [9] obtained first integrals. The Lagrangian and
Hamiltonian structure associated with these solutions are discussed below.

4.3.1. Special solutions.

Case (a): a3 = 0. The similarity solutions fora3 = 0 may be obtained from
equations (4.22)–(4.25) by a suitable rescaling of the variables. However, it is simpler
just to re-integrate the group trajectories (4.20) witha3 = 0, to obtain the travelling wave
similarity solutions:

u = u(η) v = v(η) (4.29)

where the equations:

η = θ − λt λ = a2

a1
(4.30)
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define the similarity variable.
Substitution of the solution ansatz (4.29) and (4.30) into equations (4.1) and (4.2) yields

the equations:

(u− λ)u′(η) = αv (v − λ)v′(η) = −αu. (4.31)

Equations (4.31) may be combined to yield the differential equation

du

dv
= −v(v − λ)

u(u− λ) (4.32)

with integral

H = 1
3(u

3+ v3)− 1
2λ(u

2+ v2) (4.33)

whereH is the integration constant. Integral (4.33) was obtained by Majdaet al [9]. Below
it is shown thatH is the Hamiltonian for equations (4.31).

Introducing the canonical variables:

q1 = a(u− λ)2
2α

1
2

p1 = (v − λ)2
2aα

1
2

(4.34)

(wherea is an arbitrary constant), equations (4.31) may be written in the Hamiltonian form:

dq1

dη
= ∂H

∂p1
≡ aα 1

2v

dp1

dη
= −∂H

∂q1
≡ −α

1
2u

a
.

(4.35)

Using results (4.33)–(4.35) it follows that equations (4.31) may also be obtained by
extremizing the variational functional

L =
∫ (

(v − λ)2(u− λ)
2α

u′(η)− u
3+ v3

3
+ λ(u

2+ v2)

2

)
dη. (4.36)

Alternative canonical variables to{q1, p1} can be chosen. It is straightforward to verify that

q2 = u p2 = (v − λ)2(u− λ)
2α

(4.37)

are also canonical variables for equations (4.31) with Hamiltonian (4.33).

Case (b):a1 = 0. Integrating the group trajectories (4.20) for this case yields similarity
solutions of the form:

u = (θ − θ0)f (t) v = (θ − θ0)g(t) (4.38)

where η ≡ t is the similarity variable. Substitution of the solution ansatz (4.38) into
equations (4.1) and (4.2) yields the ordinary differential equations:

f ′(t) = −(f 2− αg) g′(t) = −(g2+ αf ). (4.39)

Equations (4.39) may be combined to yield the differential equation

df

dg
= f 2− αg
g2+ αf (4.40)

in the (f, g) phase plane.



4240 G M Webb et al

Majda et al [9], stimulated by a suggestion from Professor Cheng at MIT obtained the
integral

H = 1

2
�+ α ln |�| − α2

2�
− r2

2�
(4.41)

of equation (4.40), where

� = f − g − α r2 = f 2+ g2. (4.42)

Introducing the variables

q = af + (1− a)g p = 1

f − g − α (4.43)

wherea is an arbitrary constant, equations (4.39) may be cast in the Hamiltonian form:
dp

dt
= −∂H

∂q
≡ − f + g

f − g − α
dq

dt
= ∂H

∂p
≡ −[a(f 2− αg)+ (1− a)(g2+ αf )]

(4.44)

where the HamiltonianH is given by equation (4.41). The above concludes our discussion
of the Hamiltonian and Lagrangian variational formulations of the solutions obtained by
Majda et al [9]. In the next section we give numerical examples of the similarity solutions
and discuss the phase plane structure of equations (4.26), (4.32) and (4.40).

5. Solution examples

In this section we investigate the phase plane structure of the similarity solutions obtained
in section 4.3. The physically relevant solutions are required to be periodic inθ (a period
of 2π was assumed in section 3, although this normalization for the period is not essential),
and to have zero means foru and v averaged over the period. In section 5.1 we discuss
solutions that depend onθ and t . We begin by discussing two solutions investigated by
Majda et al [9] (case (a) a3 = 0, and case (b) a1 = 0 of section 4.3), and then go on to
discuss the general similarity solutions witha1 6= 0 anda3 6= 0. Section 5.2 discusses how
the solutions of section 5.1 may be generalized to include a dependence on the slow space
variablex.

5.1. Solutions dependent onθ and t

5.1.1. Casea3 = 0. The solutions of interest are the travelling wave solutions with
similarity variableη = θ − λt , described by equations (4.29)–(4.33). Figure 1 shows the
contours of the Hamiltonian

H0 = 1
3(u

3+ v3)− 1
2λ(u

2+ v2) (5.1)

in the (u, v)-plane (see also [9], figure 30). There are four critical points of the differential
equations (4.31) and (4.32), namely the pointsA(0, 0), B(λ, 0), C(λ, λ) andD(0, λ) in
figure 1. The detailed structure of the trajectories in the vicinity of the critical points may
be ascertained by linearizing equation (4.32) about these points. The pointsA andC are
centres, whereas pointsB andD are saddles. The orbits of most physical interest in figure 1
are the periodic orbits enclosed within the critical contour EFBDE (H0 = −λ3/6). From
equations (4.31):

v = 1

α

d

dη

(
(u− λ)2

2

)
u = − 1

α

d

dη

(
(v − λ)2

2

)
. (5.2)
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Figure 1. Contours of the Hamiltonian (5.1) for the travelling wave solutions of
equations (4.29)–(4.32) corresponding to a saw-tooth entropy wave profile for the caseλ = 1.
The critical contours DEFBD and GBDG have a height ofH = Hc = −λ3/6.

Hence, the periodic orbits within EFBDE have zero means〈u〉 and〈v〉. Note that the orbits
about the other centre critical pointC do not have zero means, since du/dη and dv/dη
diverge asu → λ and v → λ respectively. This accounts for the reversal of the orbits
about the horizontal linev = λ and vertical lineu = λ.

The equation of the critical contourHc = −λ3/6 that passes through the critical points
B(λ, 0) andD(0, λ) consists of the straight line

u+ v = λ (5.3)

connecting the critical points, and the curved part of the contour described by the algebraic
curve

u2+ v2− uv − 1
2λ(u+ v + λ) = 0. (5.4)

It is of interest to note that the periodic orbits that lie within the critical contour EFBDE
have contour heights in the range−λ3/6 < H0 < 0, where the contour heightH0 = 0
corresponds to the centre critical pointA.

One can show that the periodT of the periodic orbits within EFBDE is a monotonic
increasing function ofH0, of the formT = (λ/α)τ(H0/Hc) whereHc = −λ3/6 is the value
of H0 for the critical contour. The smallest period orbit is for the orbit EFBDE, and the
largest period is obtained for the limiting, zero radius orbit aboutA. The periodic orbits,
and an expression forT are discussed in more detail in the appendix.

Figure 2 shows plots ofu(η) and v(η) for a periodic travelling wave solution with
H0 = −0.13, α = 1, λ = 1.05, for which the wave periodT = 2π . Note the periodic
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exchange of energy between the two sound waves. The travelling wave corresponding to
the orbit EFBDE in figure 1, has a cusp in the profile ofu(η) corresponding to pointD
in figure 1. It is of interest to note that the conservation ofH0 throughout the motion is
related to theθ -translation conservation law:

∂

∂t

[
1

2
(u2+ v2)

]
+ ∂

∂θ

[
1

3
(u3+ v3)

]
= 0 (5.5)

obtained in equation (4.14). Equation (5.5) is the wave action conservation law, and is
also related to the Manley–Rowe relations (2.16). Thus, the constancy ofH0 throughout the
wave may be thought of as a balance between the conserved action densityE2 = 1

2(u
2+v2)

and the action fluxF2 = 1
3(u

3+ v3).

5.1.2. Casea1 = 0. The solutions of interest in this case are described by equations (4.38)–
(4.42), namely

u = f (t)(θ − θ0) v = g(t)(θ − θ0) |θ − θ0| < π (5.6)

extended periodically inθ with a period of 2π . These solutions have an array of shocks
located atθ = θ0+ (2n+ 1)π wheren takes on integer values. The solutions forf andg
satisfy equations (4.39):

f ′(t) = −(f 2− αg) g′(t) = −(g2+ αf ) dg

df
= g2+ αf
f 2− αg . (5.7)

Figure 2. Plots of u and v versusη for a periodic travelling wave solution described by
equations (5.1) and (5.2). The Hamiltonian has a value ofH0 = −0.13, α = 1 andλ = 1.05.
The period of the wave inθ or η is T = 2π .
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This solution was studied by Majdaet al [9].
At a shock inu andv, the Rankine Hugoniot conditions for equations (4.1) and (4.2)

require that the shock speed satisfy

s = 1
2(u− + u+) and/or s = 1

2(v− + v+) (5.8)

whereu± = u(θs±, t), v± = v(θs±, t) denote the values ofu and v on either side of the
shock located atθ = θs . The Lax entropy conditions (Lax [18]; Chorin and Marsden [19])
require eitheru− > u+ or v− > v+ or bothu− > u+ and v− > v+ at the shock. In the
present case of adiabatic gas dynamics, the Lax entropy conditions are equivalent to the
requirement that the shock is compressive. The conditionsu− > u+ and/or v− > v+ used
in conjunction with the wave action integral (2.16) withm = 1 andn = −1 requires

∂

∂t

(∫ 2π

0

u2+ v2

2
dθ

)
= −

∑
s

[
u3+ v3

3

]θs−
θs+
< 0 (5.9)

so that the wave action integral is a decreasing function of time, owing to the presence of
shocks. The entropy conditions in the present example require

f (t) > 0 and g(t) > 0. (5.10)

Conditions (5.10) appear to be unnecessarily restrictive, since the wave action will decay if
the right-hand side of equation (5.9) is negative definite.

Figure 3 shows contours of the Hamiltonian integral (4.41) of equations (5.7) in the
(f, g) phase plane for the caseα = 1 (compare with figure 1 of [9]). The autonomous
differential equation system (5.7) in the(f, g) phase plane has a centre critical point at

Figure 3. Contours of the Hamiltonian integral (4.41) for the periodicN -wave solution obtained
by Majdaet al [9] described by equations (5.6) and (5.7) for the caseα = 1.
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Figure 4. A schematic diagram of the evolution of anN -wave, periodic shock solution described
by equations (5.6) and (5.7), where the parameterθ0 = 0. The shocks occur atθs = (2s + 1)π
(s integer), and correspond to the Hamiltonian contour heightH0 = 0.015 displayed in figure 3.

A(0, 0) and a saddle critical point atB(−α, α). Note thatg = f − α is a special solution
of the equation for dg/df in equations (5.7). The Hamiltonian integral (4.41) diverges as
g→ (f −α), with H →+∞ asg→ (f −α)+ butH →−∞ asg→ (f −α)−. Figure 4
shows the evolution of anN -wave periodic shock solution forθ0 = 0. Shocks occur at
θs = (2s + 1)π (s integer) and the amplitude of the wave is determined by theH = 0.15
contour in figure 5 at three different values oft , with t = 0 corresponding to the instant
whenf = 0 andg > 0 (case (a)), t = tcrit wheng = 0 andf > 0 (case (c)), and at an
intermediate timetI : 0 < tI < tcrit (case (b)). At time t = 0, u ≡ 0, andv consists of an
N -wave profile inθ with shocks. As time increases the forward waveu develops into an
N -wave as part of the energy in the backward wave is transferred to the forward waveu.
At some later timet = tcrit, u is a fully developedN -wave andu ≡ 0. The shocks in this
model have zero speeds = 0. Majdaet al [9] argue that after the critical time wheng = 0
(when the entropy conditions (5.10) first fail), the solution evolves into a cusped rarefaction
wave. They also argue that since the shocks inu andv are locked together, the solution is
structurally unstable to perturbations.

5.1.3. Casea1 6= 0 anda3 6= 0. In this case the similarity solutions foru andv are given
by equations (4.23)–(4.26), namely

u = (θ − θ0)f (η) v = (θ − θ0)g(η) (5.11)
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Figure 5. Schematic diagram of the character of the critical points of the differential
equation (5.13) for dg/df depending on the parameters(α, µ). The critical points in the
(f, g) phase plane are located at the pointsA(0, 0), B(µ,µ), C(µ,µ2/α), D(−µ2/α, µ) and
E(−α, α). The points are either saddles, centres, spirals or nodes. The parameter space is split
up into eight sectors by the linesµ = 0, α = 0 andµ = ±α.

where

η = ln |θ − θ0| − µt µ = a3

a1
θ0 = −a2

a3
(5.12)

andf andg satisfy the differential equations:

f ′(η) = −f
2− αg
f − µ g′(η) = −g

2+ αf
g − µ

dg

df
= (g2+ αf )(f − µ)
(f 2− αg)(g − µ) ≡

N

D
(5.13)

where the last equation describes the solution trajectories in the(f, g) phase plane.
Before discussing the phase plane trajectories of equations (5.13) it is instructive to

consider the limiting behaviour of the similarity variableη in the limits wherea1→ 0 and
a3→ 0.

5.1.4. Limita3→ 0. Consider the rescaled similarity variableη∗T :

η∗T =
λ

µ

(
η − ln

∣∣∣∣ λµ
∣∣∣∣) λ = −θ0µ lim

µ→0
η∗T = θ − λt. (5.14)

Note that in the limit asµ→ 0, the variableη∗T becomes the the similarity variable for the
travelling wave solution of equations (4.29)–(4.32).

The solutions (4.23)–(4.26) foru andv may be written in the form:

u = F(η∗T ) exp(µt) F (η∗T ) = −σ exp(η)f (η)

v = G(η∗T ) exp(µt) G(η∗T ) = −σ exp(η)g(η)
(5.15)
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whereσ = sgn(θ0) is the sign ofθ0 andF andG satisfy the equations:

dF

dη∗
= αG− µF

exp(−µη∗/λ)F − λ
dG

dη∗
= − αF + µG

exp(−µη∗/λ)G− λ (5.16)

where we use the notationη∗ ≡ η∗T . Lettingµ→ 0, equations (5.16) reduce to the travelling
wave equations (4.31) foru ≡ F(η∗) andv ≡ G(η∗).

5.1.5. Limita1 → 0. In this limit we consider the rescaled similarity variableη∗N , and
functionsF̂ (η∗N) andĜ(η∗N):

η∗N = −
η

µ
lim
µ→∞ η

∗
N = t F̂ (η∗N) = f (η) Ĝ(η∗N) = g(η). (5.17)

In the limit asµ→∞ the functionsF̂ and Ĝ satisfy the differential equations (4.39) for
theN -wave solutions of [9].

5.1.6. Phase plane trajectories.The differential equation (5.13) for dg/df in general has
five critical points in the(f, g) phase plane where the numeratorN and denominatorD on
the right-hand side of equation (5.13) for dg/df are simultaneously zero. The character of
the critical points depends on the relative values ofα andµ. The critical points are located
at the pointsA(0, 0), B(µ,µ), C(µ,µ2/α), D(−µ2/α, µ) andE(−α, α). The character of
the critical points may be determined by linearizing the differential equations (5.13) about
the critical points. A schematic diagram of the character of the critical points depending
on the values ofα andµ is given in figure 5. Linearizing the differential equation (5.13)
about the critical points shows that:A(0, 0) is a centre;B(µ,µ) is a centre ifµ2 < α2 but

Figure 6. Phase plane trajectories of the differential equation system (5.13) in the(f, g) plane
for the caseµ = 0.5 andα = 1. The corresponding similarity solutions foru andv are given
by equations (5.11).
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Figure 7. Same as in figure 6 exceptµ = 2 andα = 1.

a saddle ifµ2 > α2; point E(−α, α) is a node ifµ2 < α2, but a saddle ifµ2 > α2. Points
C andD are more complicated in their behaviour. PointC(µ,µ2/α) is a spiral point in the
parameter regime between theµ-axis and the lineµ = α (i.e. 0< α < µ or µ < α < 0); a
node if (α, µ) lies in the regime between theµ-axis and the lineµ = −α (i.e.−µ < α < 0
or 0 < α < −µ), and a saddle if|α| > |µ|. Similarly, pointD(−µ2/α, µ) is a node if
(α, µ) lies in the region between theµ-axis and the lineµ = α; a spiral point if(α, µ) lies
in the region between theµ-axis and the lineµ = −α; and a saddle if|α| > |µ|.

Figures 6 and 7 show typical phase space plots forf and g obtained by solving the
differential equations (5.13). Figure 6 shows phase plane trajectories for the caseα = 1
andµ = 0.5. The critical pointA is a centre;B is a centre; pointsC andD are saddles,
and pointE is a node. The phase plane trajectories are similar in many respects to the
travelling wavephase plane trajectories in figure 1.

Figure 7 shows the phase plane trajectories for the differential equation system (5.13) for
a case in whichµ > α, namelyµ = 2 andα = 1. In this case linear critical point analysis
indicates thatA(0, 0) is a centre,B(µ,µ) is a saddle,C(µ,µ2/α) is a spiral,D(−µ2/α, µ)

is a node andE(−α, α) is a saddle. Note that the trajectories aboutA(0, 0) are spirals. The
phase plane trajectories aboutA are somewhat similar to those for theN -wave periodic
shock solution displayed in figure 3 (µ→∞, θ0 = −λ/µ fixed, α = 1).

Figure 8 shows plots of the similarity solutions foru(θ, t) andv(θ, t) versusθ at two
time instantst = 0 and t = t1 = 10 ln(1.25) = 2.231 using the parametersλ = −0.1π ,
µ = 0.1 andα = 1. The full curves giveu(θ, 0) andv(θ, 0) whereasu(θ, t1) andv(θ, t1)
are given by the broken curves. Forµ > 0, the wave progresses outwards from the
central pointθ = π in both directions and grows in amplitude as it progresses. Linearizing
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equations (5.16) yield the approximate small amplitude solutions

u(θ, t) = r0
∣∣∣∣θ − θ0

θ0

∣∣∣∣ sin

(
α

µ
ln

∣∣∣∣θ − θ0

θ0

∣∣∣∣− αt)
v(θ, t) = r0

∣∣∣∣θ − θ0

θ0

∣∣∣∣ cos

(
α

µ
ln

∣∣∣∣θ − θ0

θ0

∣∣∣∣− αt) (5.18)

for u and v, which are similar to the solutions foru and v displayed in figure 8. The
solutions in figure 8 do not have zero means with respect toθ averaged fromθ = 0 to
θ = 2π . However, it may be possible to construct physically relevant solutions of the
above form that are periodic with period 2π in θ and with zero means with respect toθ ,
by inserting shocks. In any event the type of solutions described by figures 6–8 show how
the travelling wave solutions (figures 1 and 2), and theN -wave, periodic shock solutions
(figures 3 and 4) are special limits of the more general solutions of figures 6–8.

5.2. Solutions dependent onθ , t andx

The solutions dependent onθ and t , discussed in section 5.1, can be generalized to include
a dependence on the long space variablex. For the case of a periodic saw-tooth entropy
wave profile (equation (2.19)), the solutions for the backward and forward wave velocity
perturbationsu andv satisfy equations (2.21) and (2.22). Equations (2.21) and (2.22) admit
solutions of the form:

u = u(z, θ) v = v(z, θ) (5.19)

Figure 8. Plots ofu(θ, t) andv(θ, t) versusθ corresponding to the similarity solutions (5.15),
for two time instantst = 0 (full curve) andt = t1 = 2.231 (broken curve) in whichF(η∗) and
G(η∗) satisfy equations (5.16). The solutions forF(η∗) andG(η∗) are forµ = 0.1, λ = −0.1π ,
α = 1, with F = 0 andG = 0.02 atη∗ = 0.
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where

z = νx + ωt (5.20)

andν andω are constants. The solutions of section 5.1 correspond to solutions of the form
of (5.19) in whichν = 0 andω = 1. Solutions of the so-called signalling problem in which
u = u(x, θ) andv = v(x, θ) have been discussed by Anileet al [7].

Substituting the solution ansatz (5.19) and (5.20) into equations (2.21) and (2.22) results
in the equations

(ω + ν)uz + uuθ − αv = 0

(ω − ν)vz + vvθ + αu = 0.
(5.21)

Equations (5.21) admit the same infinitesimal Lie point symmetries as the Lie point
symmetries of theθ and t dependent solutions discussed in equations (4.6)–(4.9), exceptt

is replaced byz. Hence, equations (5.21) admit similarity solutions analogous to the(θ, t)

dependent solutions discussed in sections 4 and 5.1.
The simplest solutions of equations (5.21) are probably the travelling wave solutions of

the form

u = u(η) v = v(η) (5.22)

where

η = θ − λz ≡ θ − λ(νx + ωt) (5.23)

is the similarity variable andλ is a constant. Substituting the solution ansatz (5.22) and
(5.23) into equations (5.21) yields the ordinary differential equations:

[u− λ(ω + ν)]u′(η) = αv [v − λ(ω − ν)]v′(η) = −αu (5.24)

for u andv. From equations (5.24)

du

dv
= −v[v − λ(ω − ν)]

u[u− λ(ω + ν)] (5.25)

is the form of the corresponding differential equation for the solution trajectories in the
(u, v) phase plane. Equations (5.25) have the Hamiltonian integral

H = 1
3(u

3+ v3)− 1
2λ[(ω + ν)u2+ (ω − ν)v2]. (5.26)

One pair of canonical variables(q, p) for the Hamiltonian system of differential
equations (5.24), with Hamiltonian (5.26) are:

q = a[u− λ(ω + ν)]2

2α
1
2

p = [v − λ(ω − ν)]2

2α
1
2a

(5.27)

wherea is an arbitrary constant. The canonical variables (5.27) are the natural generalization
of the canonical variables(q1, p1) of equations (4.34) for the(θ, t)-dependent travelling
wave solutions discussed in sections 4.3 and 5.1.

Figures 9 and 10 show examples of phase plane plots of the solutions of equations (5.24)
and (5.25) for two representative cases. Figure 9 shows a case in whichω > ν > 0 (ω = 1,
ν = 0.7 andλ = 1), which corresponds in the long scale sense to a supersonic travelling
wave moving in the negativex-direction with phase velocityVp = −1.4286cex where
c is the gas sound speed (see equation (5.23)). Figure 10 shows a further example that
corresponds in the long scale sense to a subsonic travelling wave moving in the negative
x-direction (ω = 0.7, ν = 1, andλ = 1), with phase velocityVp = −0.7cex . Figures 9 and
10 and equation (5.25) have four critical points in the(u, v) phase plane located atA(0, 0),
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Figure 9. Contours of the Hamiltonian integral (5.26) corresponding to the travelling wave
similarity solution of equations (5.22)–(5.24) for the parameter valuesω = 1, ν = 0.7 and
λ = 1. The solution depends onθ , x and t and corresponds to a supersonic travelling wave
with velocity Vp = −1.4286cex wherec is the sound speed.

B[λ(ω+ ν), 0], C[λ(ω+ ν), λ(ω− ν)] andD[0, λ(ω− ν)]. In the supersonic caseω2 > ν2,
A andC are centres, andB andD are saddles. The solution trajectories in figure 9 are
quite distinct from the travelling wave phase portraits for the caseω = 1, ν = 0 andλ = 1
displayed in figure 1 (in figure 1Vp = 0). In figure 9 the critical contours passing through
the saddlesB andD are of different height, and there is no trajectory joining the saddles
as in figure 1. Smooth, periodic travelling waves in figure 9 with zero means foru and
v averaged over one period inθ , are represented by the closed contours that encircle the
centre critical point atA. In the subsonic case displayed in figure 10 for whichω2 < ν2,
A and C are saddles andB andD are centres. In this latter case there are no smooth
travelling wave solutions with zero means foru and v, since the critical pointA(0, 0) is
a saddle and there are no trajectories that can encircle the originA(0, 0). For the sonic
caseω = ±ν, the critical points coalesce into two pairs of critical points to form critical
points that are a hybrid between a centre and a saddle. Thus, asVp ↓ c the amplitude of
the smooth travelling wave solutions tends to zero.

6. Hamiltonian equations in Fourier space

In this section we consider the form of the resonant-wave interaction equations (3.1) and
(3.2) for the case of solutions that are independent of the long space variablex, and for the
casem = 1 andn = −1. In this case the equations for the sound waves can be expressed
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Figure 10. Same as in figure 9 except for the case of a subsonic solution withω = 0.7, ν = 1
andλ = 1. The wave velocityVp = −0.7cex , wherec is the sound speed.

in the Hamiltonian form:

ut = Dθ

(
δH

δu

)
vt = Dθ

(
δH

δv

)
(6.1)

where the Hamiltonian functionalH from equation (3.13) may be split into quadratic(H0)

and cubic(H1) terms:

H = H0+H1

H0 =
∫ 2π

0
dθ 1

2[vK̂†(D−1
θ u)− uK̂(D−1

θ v)]

H1 = −
∫ 2π

0
dθ 1

6(u
3+ v3)

(6.2)

and the integral operatorŝK and K̂† are defined in equations (3.3) and (3.4). The term
H0 in equations (6.2) represents linear dispersive wave effects associated with three-wave
resonant interactions, andH1 consists of the Burgers’ self-wave interaction terms.

Since the solutions foru andv of equations (3.1) and (3.2) (or equations (6.1) and (6.2))
are assumed to be 2π -periodic inθ with zero means, it is natural to investigate the Fourier
space decomposition of the solutions with respect toθ by using the Fourier expansions:

u(θ, t) =
∞∑

p=−∞
up(t) exp(ipθ) v(θ, t) =

∞∑
p=−∞

vp(t) exp(ipθ) (6.3)

where the Fourier coefficients{up(t)} and{vp(t)} are given by the formulae:

up(t) = 1

2π

∫ 2π

0
u(θ, t)exp(−ipθ) dθ vp(t) = 1

2π

∫ 2π

0
v(θ, t)exp(−ipθ) dθ (6.4)
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and the variablep takes on only integer values. Note thatu0 = 0 and v0 = 0 in
equations (6.3) sinceu and v have zero means. In Fourier space, equations (3.1) and
(3.2) reduce to

∂us

∂t
= − is

2

∞∑
p=−∞

upus−p −Ksvs

∂vs

∂t
= − is

2

∞∑
p=−∞

vpvs−p +K−sus
(6.5)

where

Ks = 1

2π

∫ 2π

0
K(θ) exp(−isθ) dθ (6.6)

denotes thesth Fourier coefficient ofK(θ). Note that for the periodic saw-tooth entropy
profile caseKs is given by

Ks = K−s = −α. (6.7)

Although the Dirac delta distribution (2.20) forK(θ) is not a square integrable equation,
(6.6) still yields the correct formula (6.7) forKs . Sinceu(θ, t), v(θ, t) andK(θ) are real it
is necessary that the Fourier coefficients satisfy the equations:

u∗s = u−s v∗s = v−s K∗s = K−s (6.8)

where the superscript∗ denotes the complex conjugate.
The main aim of the present development is first to determine the form of Hamilton’s

equations in Fourier space (section 6.1). The equations are then transformed to normal form
(see for example [20, 21]), in order to isolate the normal modes of the system (section 6.2).
Further canonical transformations can then be carried out to further investigate the equations.

6.1. Hamilton’s equations in Fourier space

Using the Fourier representations (6.3) foru andv (and a similar representation forK(θ)),
the Hamiltonian functionalsH0 andH1 may be expressed as

H0 = iπ
∞∑′

p=−∞

Kpvpu−p −K−pv−pup
p

(6.9)

H1 = −π
3

∞∑′

s=−∞

∞∑′

p=−∞
(usupu−s−p + vsvpv−s−p) (6.10)

where the Fourier coefficients{us, vs,Ks} satisfy the reality constraints (6.8). The
superscript′ on the sums in equations (6.9) and (6.10) denote sum over all integers excluding
p = 0 ands = 0.

Noting thatH = H0+H1, straightforward computation ofδH/δu∗s andδH/δv∗s yields
Hamilton’s equations in Fourier space as

∂us

∂t
= is

2π

δH

δu∗s
= − is

2

∞∑
p=−∞

upus−p −Ksvs (6.11)

∂vs

∂t
= is

2π

δH

δv∗s
= − is

2

∞∑
p=−∞

vpvs−p +K−sus. (6.12)

Equations (6.11) and (6.12) imply that{us, u∗s } and {vs, v∗s } are canonically conjugate
variables.
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6.2. Reduction to normal form

Consider the linearized form of Hamilton’s equations (6.11) and (6.12):
∂us

∂t
= is

2π

δH0

δu∗s
= −Ksvs

∂vs

∂t
= is

2π

δH0

δv∗s
= K∗s us.

(6.13)

Note that the linearized equations (6.13) have solutions forus and vs that satisfy the
equations:

∂2us

∂t2
+ |Ks |2us = 0

∂2vs

∂t2
+ |Ks |2vs = 0. (6.14)

For normal coordinates{as} we require∂as/∂t = i|Ks |as and that {as} are canonical
coordinates. Thus, normal coordinates allow the identification of the different linear wave
modes in the system.

Following the approach of Zakharov and Kuznetsov [20] and Zakharovet al [21], we
consider transformations of the form:(

us
vs

)
=
(
αs α∗−s
βs β∗−s

)(
as
a∗−s

)
(6.15)

where{as} and {a∗s } are normal variables. Note that transformations (6.15) automatically
ensure thatu∗s = u−s andv∗s = v−s as required by the reality constraints (6.8) foru andv.
It turns out that one can choose the coefficients{αs} and {βs} in equations (6.15) so that
the {as} satisfy Hamilton’s equations:

∂as

∂t
= i sgn(s)

δH0

δa∗s
= i|Ks |as (6.16)

for the normal variables, where sgn(s) denotes the sign ofs.
The inverse of transformations (6.15) are given by:

as = (β∗−sus − α∗−svs)/Js
a∗−s = (−βsus + αsvs)/Js

(6.17)

where

Js = αsβ∗−s − βsα∗−s (6.18)

is the determinant of transformation (6.15). From equations (6.9) and (6.15) the Hamiltonian
H0 may be expressed as

H0 = 2π i
∞∑′

p=−∞
[Kpβpα

∗
p −K∗pβ∗pαp)apa∗p +Kpβpα−papa−p −K∗pβ∗pα∗−pa∗pa∗−p]/p. (6.19)

Computing∂as/∂t using equations (6.17), (6.11) and (6.12) and computingδH0/δa
∗
s using

equation (6.19), we find that equations (6.16) are satisfied providedαs andβs are chosen
so that

αs = iβ−s Js = i[ |βs |2+ |β−s |2] = i|s|
2π

β−s = Ks

|Ks |βs. (6.20)

Equations (6.20) have solutions

αs = i

( |s|
4π

)1
2
(
Ks

|Ks |H(s)+ 1−H(s)
)

βs =
( |s|

4π

)1
2
(
H(s)+ K∗s

|Ks | [1−H(s)]
) (6.21)
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whereH(s) is the Heaviside step function.
From equations (6.15) and (6.21) the original coordinates{us} and{vs} can be expressed

in terms of the normal coordinates, by the equations:

us = i

( |s|
4π

)1
2
[(

Ks

|Ks |as − a
∗
−s

)
H(s)+

(
as − Ks

|Ks |a
∗
−s

)
[1−H(s)]

]
vs =

( |s|
4π

)1
2
[(
as + K∗s

|Ks |a
∗
−s

)
H(s)+

(
K∗s
|Ks |as + a

∗
−s

)
[1−H(s)]

]
.

(6.22)

The inverse transformations are readily determined from (6.16).
In terms of the normal coordinates{as}, the HamiltonianH0 has the form:

H0 =
∞∑′

s=−∞
sgn(s)|Ks |asa∗s (6.23)

where ωs = |Ks | are the characteristic frequencies for the{as}. Similarly, the cubic
Hamiltonian functionalH1 in equation (6.10) may be written in terms of the normal
coordinates as

H1 = −π
3

∞∑′

k=−∞

∞∑′

p=−∞

∞∑′

s=−∞
[(Uspkasapak + U ∗spka∗s a∗pa∗k )δk+s+p,0

+3(Vspkasapa
∗
k + V ∗spka∗s a∗pak)δk−s−p,0] (6.24)

where

Uspk = αsαpαk + βsβpβk
Vspk = αsαpα∗k + βsβpβ∗k

(6.25)

andδa,b is the Kronecker delta symbol.
In terms of normal coordinates Hamilton’s equations (6.11) and (6.12) may be expressed

in the form:

∂as

∂t
= i sgn(s)

δH

δa∗s
= i

[
|Ks |as − π sgn(s)

∞∑′

p=−∞

∞∑′

k=−∞
(U ∗spka

∗
pa
∗
k δk+s+p,0

+Vkpsapakδk+p−s,0+ 2V ∗spka
∗
pakδk−s−p,0)

]
. (6.26)

Thus{as, a∗s } are canonically conjugate pairs.

7. Summary and concluding remarks

The main theme of this paper has been the Hamiltonian structure of the equations for
three-wave resonant interaction in adiabatic gas dynamics in one Cartesian space dimension
derived by Majda and Rosales [1]. The equations consist of two inviscid Burgers equations
for the backward and forward sound waves coupled via linear integral operators that describe
the resonant reflection of a sound wave off an entropy wave disturbance to produce the
reverse sound wave. The detailed form of the equations (equations (2.11) and (2.12))
depend on the resonance conditions (2.7) that relate the frequencies and wavenumbers of
the entropy wave to those of the sound waves, as well as the dispersion equations for the
waves involved.

In section 3, Lagrangian and Hamiltonian formulations of the equations were established
for the lowest-order interaction case (m = 1 andn = −1) in which the wavelengths of the
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backward and forward sound waves`1 and `3 are twice that of the entropy wave(`2)

(Majda and Rosales [1] in fact restricted their attention solely to this case). The Lagrangian
variational principle (equations (3.10) and (3.11)) was established by introducing velocity
potentialsU andV for the forward and backward sound wave velocity perturbationsu and
v and then expressing the equations in potential form. The other important point to note
is the skew adjoint character of the matrix integral operator describing three-wave resonant
interactions. An example of the Hamiltonian structure of the equations for a higher-order
case in which the wavelengths of the backward sound wave (`1) and forward sound wave
(`3) are related to the entropy wave of length`2 by the equations̀1 = 4`2 and`3 = 2`2

was then considered.
In section 4, a study of the similarity solutions and conservation laws of the equations

was carried out for the case of a periodic saw-tooth entropy wave profile in the fast phase
variable θ . The analysis was restricted to cases where the backward and forward sound
wave velocity perturbationsu andv were independent of the large space variablex. Four
conservation laws were established by exploiting the Lie point symmetries admitted by
the potential form of the equations and by an application of Noether’s theorem. Classical
similarity solutions of the equations were derived using the Lie point symmetries. The
Hamiltonians and canonical variables for two classes of similarity solutions obtained by
Majda et al [9] corresponding to the travelling wave solutions and a periodicN -wave
solutions with shocks were discussed.

Numerical examples of the similarity solutions of section 4, and more general solutions
dependent on the large space variablex were used in section 5 to illustrate the interplay
between nonlinear wave steepening and the dispersive three-wave resonant interactions. The
travelling wave solutions considered by Majdaet al [9] correspond to closed periodic orbits
in the (u, v) phase plane obtained by plotting the contours of the Hamiltonian integral.
These solutions can be considered as a special limit of more general similarity solutions.
The more general solutions exhibit spiralling orbits about the origin in the appropriate(f, g)

phase plane, and a more complex singularity structure involving critical points consisting of
centres, saddles, nodes and spiral points. A generalization of the travelling wave solution
of Majda et al [9] which depends on the large space variablex was studied. On the long
space and timescales these solutions correspond to supersonic periodic travelling waves.
The velocity amplitudes of the sound waves decrease monotonically to zero as the wave
speedVp approaches the sound speedc. AsVp →±cex the two pairs of saddles and centre
critical points coalesce to form two cusp-like critical points which are hybrids between a
centre and a saddle. In the subsonic regimeVp < c, no smooth, periodic travelling wave
solutions with constant wave speed exist.

Hamiltonian equations in Fourier(p, t) space were derived in section 6, wherep is
the Fourier-space variable corresponding to the fast phase variableθ of the waves. The
Hamiltonian in Fourier space was transformed to normal form (e.g. [20, 21]) in order to
isolate the normal modes of the system. The characteristic frequencies in Fourier space
areωp = |Kp|, whereKp is thepth Fourier coefficient corresponding to the entropy wave
kernelK(θ) occurring in the three-wave resonant interaction integrals.

Further aspects of three-wave resonant interactions of interest that deserve further
attention consist of a more direct derivation of the Majda Rosales [1] equations using
the Hamiltonian formulation of adiabatic, non-isentropic gas dynamics (e.g. [20]), and
further analysis of the Hamiltonian Fourier space equations. Also of interest are related
equations derived by Hunteret al [8] describing three-wave resonant interactions in adiabatic
gas dynamics in two or more spatial dimensions, in which case the sound waves can be
resonantly reflected by both the entropy wave and vorticity eigenmodes.
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Appendix

In this appendix we describe the periodic orbits of the Hamiltonian (5.1). From
equation (5.1) the Hamiltonian contours are equivalent to the cubic equations:

v3− 3
λ

2
v − 3H̃0 = 0 H̃0 = H0− u

3

3
+ λ

2
u2. (A1)

For the periodic orbits within EFBDE in figure 1, equations (A1) have three real roots for
u andv given by the equations:

v1 = λ cos

(
θ

3

)
+ λ

2
v2 = λ cos

(
θ + 2π

3

)
+ λ

2
v3 = λ cos

(
θ + 4π

3

)
+ λ

2

u1 = λ cos

(
φ

3

)
+ λ

2
u2 = λ cos

(
φ + 2π

3

)
+ λ

2
u3 = λ cos

(
φ + 4π

3

)
+ λ

2
(A2)

where

cosθ = 1+ cosθ0− cosφ ≡ 1+ 12
H̃0

λ3
cosθ0 = 1+ 12

H0

λ3
. (A3)

Note thatv1 > v3 > v2 andu1 > u3 > u2. The periodic orbits inside EFBDE are described
by u2, u3, v2 andv3, where 06 φ 6 θ0 < π and 06 θ 6 θ0. The periodT of the periodic
orbits within EFBDE are given by

T =
∮

dη = 2π
dI

dH0
(A4)

where

I = 1

2π

∮
p1 dq1 ≡ − λ4

8πα

∫ θ0

0
sin

(
θ

3

)[
1+ cos

(
θ

3

)][
cos

(
φ

3

)
+ cos

(
2φ

3

)]
dφ

(A5)

is the action (e.g. [17]). Equations (A4) and (A5) yield

T = λ

α

∫ θ0

0

[cos( 1
3φ)+ cos( 2

3φ)][cos( 1
3θ)+ cos( 2

3θ)]

sinθ
dφ. (A6)

for the period of the orbits within EFBDE. For the critical contour(H0 = −λ3/6) T = Tc
and for the limiting orbit aboutA(0, 0) asH0→ 0 (T → T0) we have

Tc = λ

α

(
3+ 3

1
2π

2

)
T0 = 2π

λ

α
. (A7)

Note thatTc 6 T 6 T0 for the periodic orbits inside EFBDE.
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